Qualifying Exam Logic (Set Theory) January 21, 2000

Instructions:

Do all six problems. If you think that a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

E1. Assume the Continuum Hypothesis. Let $\mathcal{L} = \{R\}$, where R is binary, and let T be the theory in \mathcal{L} whose axioms are: $\forall x [xRx], \forall xy [xRy \leftrightarrow yRx],$ and $\forall xyz [xRy \wedge yRz \rightarrow xRz]$. Prove that T has exactly \aleph_1 non-isomorphic models of size \aleph_1 .

E2. Define 0! = 1, $(\alpha + 1)! = \alpha! \cdot (\alpha + 1)$, and $\gamma! = \sup_{\alpha < \gamma} \alpha!$ for limit γ . So, $\omega! = \omega$, $(\omega + 2)! = \omega \cdot (\omega + 1) \cdot (\omega + 2)$, and $(\omega + \omega)! = \omega^{\omega}$. Prove that:

- 1. $\alpha! \leq \alpha^{\alpha}$ when $\alpha \neq 0$.
- 2. $(\beta + \alpha)! \ge \beta^{1+\alpha}$.
- 3. ε_0 is the least $\alpha > \omega$ such that $\alpha! = \alpha$.

 $\varepsilon_0 = \sup_{n \in \omega} \tau_n$, where $\tau_0 = \omega$ and $\tau_{n+1} = \omega^{\tau_n}$. All exponentiation, +, and \cdot refers to *ordinal* arithmetic.

E3. Let \mathbb{Q} be the rationals, with the usual < and +. Prove that + is not first-order definable in the structure (\mathbb{Q} ; <) - that is, there is no formula $\varphi(x, y, z)$ in < and = such that for all $a, b, c \in \mathbb{Q}$: (\mathbb{Q} ; <) $\models \varphi(a, b, c)$ iff a+b=c.

S1. Assume $MA + \neg CH$. Let A_{α} , for $\alpha < \omega_1$, be infinite sets. Prove that there is a set E such that for all α , both $A_{\alpha} \cap E$ and $A_{\alpha} \setminus E$ are infinite.

S2. In M (a countable transitive model of ZFC): Let λ be an uncountable cardinal with countable cofinality and $\kappa = \lambda^+$. Let \mathbb{P} be the set of all pairs (a, A) such that $a, A \subset \kappa$, a is finite, $|A| < \lambda$, and $a \cap A = \emptyset$. Order \mathbb{P} by: $(a, A) \leq (b, B)$ iff $a \supseteq b$ and $A \supseteq B$.

Let G be \mathbb{P} -generic over M. Prove that κ is the ω_1 of M[G].

Hint: Show that in M[G]: κ remains regular, and there is a cofinal subset of κ all of whose initial segments are countable.

S3. Assume V = L. Let o(x) be the least α such that $x \in L(\alpha + 1)$. Let $W = \{o(x) : x \in \mathcal{P}(\omega)\}$. Prove that W is unbounded and non-stationary in ω_1 .

Qualifying Exam Logic (Computability Theory) January 21, 2000

Instructions:

Do all six problems. If you think that a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

E1. Assume the Continuum Hypothesis. Let $\mathcal{L} = \{R\}$, where R is binary, and let T be the theory in \mathcal{L} whose axioms are: $\forall x [xRx], \forall xy [xRy \leftrightarrow yRx],$ and $\forall xyz [xRy \wedge yRz \rightarrow xRz]$. Prove that T has exactly \aleph_1 non-isomorphic models of size \aleph_1 .

E2. Define 0! = 1, $(\alpha + 1)! = \alpha! \cdot (\alpha + 1)$, and $\gamma! = \sup_{\alpha < \gamma} \alpha!$ for limit γ . So, $\omega! = \omega$, $(\omega + 2)! = \omega \cdot (\omega + 1) \cdot (\omega + 2)$, and $(\omega + \omega)! = \omega^{\omega}$. Prove that:

- 1. $\alpha! \leq \alpha^{\alpha}$ when $\alpha \neq 0$.
- 2. $(\beta + \alpha)! \ge \beta^{1+\alpha}$.
- 3. ε_0 is the least $\alpha > \omega$ such that $\alpha! = \alpha$.

 $\varepsilon_0 = \sup_{n \in \omega} \tau_n$, where $\tau_0 = \omega$ and $\tau_{n+1} = \omega^{\tau_n}$. All exponentiation, +, and \cdot refers to *ordinal* arithmetic.

E3. Let \mathbb{Q} be the rationals, with the usual < and +. Prove that + is not first-order definable in the structure ($\mathbb{Q}; <$) - that is, there is no formula $\varphi(x, y, z)$ in < and = such that for all $a, b, c \in \mathbb{Q}$: ($\mathbb{Q}; <$) $\models \varphi(a, b, c)$ iff a+b=c.

c.e. = r.e. = recursively enumerable = computably enumerable = Σ_1^0 . $\langle W_e : e \in \omega \rangle$ is a uniformly c.e. enumeration of c.e. sets; *uniformly* c.e. means that $\{(e, n) : n \in W_e\}$ is c.e.

C1. Show that there is an effective enumeration of all c.e. sets without repetition; that is, there is a computable function f such that the sequence $\langle W_{f(e)} : e \in \omega \rangle$ is uniformly c.e. and contains each c.e. set exactly once.

C2. Show that no 1-generic set is of minimal Turing degree. (A set A is 1-generic if for all c.e. sets $S \subseteq 2^{<\omega}$ of binary strings, there is an initial segment σ of A such that either $\sigma \in S$ or no τ extending σ is in S. Here we identify sets and infinite binary strings.) *Hint*: Consider the set $B = \{x : 2x \in A\}$.

C3. Show that the collection of hyperimmune Turing degrees is closed upward. (A Turing degree **a** is *hyperimmune* if it contains a *hyperimmune set*, i.e., an infinite set A such that for any computable function f, there is some nsuch that the interval [0, f(n)] contains fewer than n elements of A.) Qualifying Exam Logic January 21, 2000 THE ANSWERS

E1. T says that R is an equivalence relation, so the models are determined up to isomorphism by the number of equivalence classes of each cardinality. For models of size \aleph_1 , there are exactly $2^{\aleph_0} = \aleph_1$ possibilities.

E2. (1) and (2) are by induction on α ; for (2), first note that $\beta! \geq \beta$. Using (1), show that $\alpha < \varepsilon_0 \to \alpha! < \varepsilon_0$, so that $\varepsilon_0! = \sup_{\alpha < \varepsilon_0} \alpha! \leq \varepsilon_0$; hence $\varepsilon_0! = \varepsilon_0$. Using (2) with $\beta = \omega$, show that $\tau_n! \geq \tau_{n+1}$ for n > 0, so that $\alpha! > \alpha$ whenever $\omega < \alpha < \varepsilon_0$.

E3. Consider a permutation of \mathbb{Q} which is an automorphism of $(\mathbb{Q}; <)$ but not of $(\mathbb{Q}; +)$.

C1. See, e.g., Odifreddi, Classical Recursion Theory (Vol. 1, p. 230).

C2. Show that B is 1-generic, and that A is 1-generic relative to B, so $\emptyset <_T B <_T A$.

C3. Suppose H is hyperimmune and $S >_T H$. Find a set T such that $H \oplus T$ is hyperimmune and Turing equivalent to S by "spreading out" S.

S1. Choose a countably infinite $a_{\alpha} \subseteq A_{\alpha}$, let $E = \bigcup_{\alpha} a_{\alpha}$, and apply MA to finite partial functions from E to 2.

S2. \mathbb{P} has the κ -cc in M, so κ remains a regular cardinal in M[G]. In M[G], form $X = \bigcup \{a : \exists A[(a, A) \in G]\}$. Then X is unbounded in κ . For $E \in \mathcal{P}(\kappa) \cap M$, if $(|E| < \lambda)^M$, then $E \cap X$ is finite. Hence, for each $\xi < \kappa$, $(|\xi \cap X| \le \omega)^{M[G]}$ (since, in M, one can cover ξ by countably many sets of size less than λ). Thus, the order type of X is $\le (\omega_1)^{M[G]}$, so that $\kappa = (\omega_1)^{M[G]}$.

S3. W is unbounded because each $L(\alpha)$ is countable for $\alpha < \omega_1$. To prove that W is non-stationary, let $\{M_\alpha : \alpha < \omega_1\}$ be a continuous increasing chain of countable elementary submodels of $L(\omega_2)$. Let $\gamma_\alpha = M_\alpha \cap \omega_1$. Make sure that $\alpha < \beta \rightarrow \gamma_\alpha < \gamma_\beta$. Then $\{\gamma_\alpha : \alpha < \omega_1\}$ is a club and is disjoint from W.