
Qualifying Exam
Logic (Model Theory)

September 1, 2000

Instructions:
Do all six of the problems. If you think that a problem has been stated

incorrectly, mention this to the proctor and indicate your interpretation in
your solution. In such cases, do not interpret the problem in such a way that
it becomes trivial.

E1. Consider the following two axiom of choice type principles:

LO. Every set can be linearly ordered.

M. For any set X the partial order (P (X),⊆) (the power set of X ordered by
inclusion) contains a maximal linearly ordered (under inclusion) subset.

Prove in set theory without the axiom of choice (ZF) that LO and M are
equivalent.

E2. Write a finite set Σ of axioms in a finite language such that for all
n ∈ ω: Σ has a model of size n iff n = k! for some k.

E3. Call a real number r computable iff the sequence of digits in the decimal
representation of r is computable. Prove that there is a computable function
f : ω → ω\{0} such that

∑
n

1
f(n)

is finite and not computable.

M1. Suppose that L is a language which contains among its symbols a
unary relation symbol ω and constants p0q, p1q, p2q, . . . , pnq, . . . (n ∈ ω). An
ω−model for L is a model in which ω is interpreted by ω and each pnq by n.

Find ℵ2 first-order sentences in some language L such that every ℵ1 of them
has an ω-model, but the whole collection doesn’t.

Hint: Consider linear orders with countable initial segments.

M2. Let B = (B;∧,∨, ′, U), where (B;∧,∨, ′) is an atomless boolean
algebra and U is an ultrafilter on B (viewed as a unary predicate). Prove that
the theory of B is decidable.

M3. Let L be a first-order language and T an L-theory. Assume that T is
model complete and universally axiomatizable. Fix a model A = (A; . . .) of T
and a function f : A → A which is definable in A without using parameters.
Show that f is piecewise given by L-terms; that is, there are finitely many
L-terms t1(x), . . . , tk(x) each with at most one free variable x such that

f(a) ∈ {t1(a), t2(a), . . . , tk(a)} for every a ∈ A.
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Qualifying Exam
Logic (Set Theory)
September 1, 2000

Instructions:
Do all six of the problems. If you think that a problem has been stated

incorrectly, mention this to the proctor and indicate your interpretation in
your solution. In such cases, do not interpret the problem in such a way that
it becomes trivial.

E1. Consider the following two axiom of choice type principles:

LO. Every set can be linearly ordered.

M. For any set X the partial order (P (X),⊆) (the power set of X ordered by
inclusion) contains a maximal linearly ordered (under inclusion) subset.

Prove in set theory without the axiom of choice (ZF) that LO and M are
equivalent.

E2. Write a finite set Σ of axioms in a finite language such that for all
n ∈ ω: Σ has a model of size n iff n = k! for some k.

E3. Call a real number r computable iff the sequence of digits in the decimal
representation of r is computable. Prove that there is a computable function
f : ω → ω\{0} such that

∑
n

1
f(n)

is finite and not computable.

S1. Suppose that S ⊆ ω1 is stationary. Prove that there exist pairwise
disjoint stationary Sn such that

S =
⋃
n<ω

Sn

S2. Let κ be an uncountable regular cardinal. Let Vκ be the sets of rank
less than κ and Hκ the sets whose transitive closure has cardinality less than
κ.

Prove that Vκ = Hκ iff κ is a strongly inaccessible cardinal.

S3. Assume MAω1 . Prove that for any partial order P with the ccc and
cardinality ω1 and for any family 〈Dα : α < ω1〉 of dense subsets of P, there
exists 〈Gn : n < ω〉 such that each Gn is a P-filter and P =

⋃
n<ω Gn and for

every α < ω1 and for every n < ω we have Gn ∩Dα 6= ∅.
Hint: Consider the direct product of countably many copies of P.
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Qualifying Exam
Logic (Computability Theory)

September 1, 2000

Instructions:
Do all six of the problems. If you think that a problem has been stated

incorrectly, mention this to the proctor and indicate your interpretation in
your solution. In such cases, do not interpret the problem in such a way that
it becomes trivial.

E1. Consider the following two axiom of choice type principles:

LO. Every set can be linearly ordered.

M. For any set X the partial order (P (X),⊆) (the power set of X ordered by
inclusion) contains a maximal linearly ordered (under inclusion) subset.

Prove in set theory without the axiom of choice (ZF) that LO and M are
equivalent.

E2. Write a finite set Σ of axioms in a finite language such that for all
n ∈ ω: Σ has a model of size n iff n = k! for some k.

E3. Call a real number r computable iff the sequence of digits in the decimal
representation of r is computable. Prove that there is a computable function
f : ω → ω\{0} such that

∑
n

1
f(n)

is finite and not computable.

C1. Construct a computable binary relation on ω which is a tree (graph
without infinite loops) with an infinite branch A such that A is not computable
but A meets every infinite computably enumerable set.

C2. A set A is called retraceable if there is a partial computable function
f such that for all x ∈ A, if x is the least element of A, then f(x) = x and if
x ∈ A is not the least element of A, f(x) is equal to the largest element of A
which is strictly less than x.

a) Show there is a noncomputable retraceable set.
Hint : Consider paths through the full binary branching tree {0, 1}<ω.
b) Show that every noncomputable retraceable set is immune. Recall that

a set A is immune if A is infinite but does not contain an infinite computably
enumerable set.

C3. Given a nonzero Turing degree b, build a degree a such that a and b
are Turing incomparable but a′ = b′.
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Answers

E1. To see that LO implies M, let (X,≤) be any linear ordering. Define
I ⊆ X is an initial segment of X iff x ≤ y ∈ I implies x ∈ I for any x, y ∈ X.
Show that the set of initial segments of X is a maximal linearly ordered subset
of P (X). To see that M implies L, let C be a maximal linearly ordered subset
of P (X) and show that x ≤ y defined by x ∈ Y implies y ∈ Y for every Y ∈ C
is a linear ordering of X.

E2. Let Σ axiomatize the set n = {0, 1, . . . , n−1}, together with the graphs
of +, · and the successor and factorial functions. To say n = k! = k · (k − 1)!,
you can say that there is a bijection from the universe (n) onto k × (k − 1)!.

E3. Define f so that for each n, the nth digit of
∑

n
1

f(n)
is 2 if the nth

computation halts and 1 if the nth computation doesn’t halt.

M1. Let L have a symbol for < and a constant pαq for each α ≤ ω2, plus
a binary function F , plus a constant c. Consider the structure

(ω2 + 1; <,F, α)α≤ω2 .

In this structure, F is chosen so that when ω ≤ α < ω1, the map x 7→ F (α, x)
defines a 1-1 map from α into ω and when ω1 ≤ α < ω2, the map x 7→ F (α, x)
defines a 1-1 map from α into ω1. Let Σ be the complete diagram of this
structure, plus the sentence c < pω2q, plus the sentence c 6= pαq for each
α ≤ ω2.

Then, in an ω-model for Σ, every α < ω1 must be standard. But then ω1

must be standard as well, since the theory says that every element below ω1

can be injected into ω. Repeating this argument with the ordinals between
ω1 and ω2, we see that ω2 must be standard as well. Thus, Σ cannot have an
ω-model, but there will be an ω-model for Σ with any of the sentences c 6= pαq
deleted.

M2. The theory of atomless boolean algebras with an ultrafilter is complete;
in fact, ℵ0-categorical.

M3. By the compactness theorem, it is enough to show that for any a ∈ A
there is an L-term t(x) with at most one free variable x such that f(a) = t(a).
Fix a ∈ A, and let

B := {t(a) : t(x) is an L-term with at most one free variable x}.

Then B ⊆ A, and if F is an n-ary function symbol of L and c ∈ Bn, then
f(c) ∈ B. Hence B is the underlying set of the substructure B of A obtained
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by interpreting each symbol S of L as SB := SA|B. Since T is universally
axiomatizable we get B |= T , and since T is model complete it follows that B
is an elementary substructure of A. Thus, f(a) being the unique image of a
under f in A implies that f(a) ∈ B, that is, f(a) = t(a) for some L-term t(x)
with at most one free variable x, as desired.

S1. First show that every stationary set S ⊆ ω1 can be splitt into two
stationary subsets. Let xα ∈ 2ω be distinct for α < ω1. For each n < ω and
i = 0, 1 let

Sn
i = {α ∈ S : xα(n) = i}

Then for some n both Sn
0 and Sn

1 are stationary, otherwise, if not, for each n
there exists in and closed and unbounded Cn such that Cn∩Sin = ∅. But since
C =

⋂
n<ω Cn is closed and unbounded it meets S in at least two points α, β.

By definition this would imply that for every n xα(n) = in = xβ(n) which
would make them equal, contradiction. Since every stationary set is splittable
into two stationary sets it is now easy by induction to split any stationary set
into infinitely many stationary subsets, i.e., split S into S0 ∪ S1, split S1 into
S1 ∪ S2, split S2 into S2 ∪ S3,and continue.

S2. Suppose that κ is strongly inaccessible. To see that Vκ ⊆ Hκ, prove by
induction that for every α < κ that Vα ∈ Hκ. Suppose α < κ and by induction
Vα ∈ Hκ. Therefor, |Vα| = β < κ, and |Vα+1| = 2β < κ and since it is transitive
we have Vα+1 ∈ Hκ. For a limit ordinal λ < κ, if we have that Vα ∈ Hκ for
each α < λ, then |Vα| < κ and hence Vλ has cardinality less than κ since κ
is regular. Since its also transitive we have that Vλ ∈ Vκ. Next show that for
any regular infinite κ that Hκ ⊆ Vκ. If not, there exists X with minimal rank
such that X ∈ Hκ but X /∈ Vκ. By the minimality of its rank we may assume
for all y ∈ X that there exists α < κ with y ∈ Vα. Since κ is regular and X
has cardinality less than κ it follows there exists β < κ such that X ⊆ Vβ and
hence X ∈ Vκ, a contradiction. For the other direction, if κ is not strongly
inaccessible, then for some α < κ we have that 2α ≥ κ. But since α ⊆ Vα we
have that |Vα+1| ≥ 2α ≥ κ and hence Vκ is not a subset of Hκ.

S3. Let
∑

n<ω P be the direct product of countably many copies of P. MAω1

implies that
∑

n<ω P has the ccc. For each α < ω1 and n < ω define

En
α = {p ∈

∑
n<ω

P : pn ∈ Dα}

Also for each p ∈ P define

Fp = {p ∈
∑
n<ω

P : ∃n < ω pn = p}

5



It is easy to check that each En
α and each Fp is dense. So by MAω1 there exists

G a
∑

n<ω P filter which meets all En
α for α < ω1 and n < ω and all Fp for

p ∈ P. For each n < ω define Gn = {pn : p ∈ G}. Each Gn is a P filter meeting
all Dα and since G meets each Fp their union covers P.

C1. Assume at stage n in the construction we have a finite connected tree
Tn with designated root 0, and a designated maximal path pn starting at 0.
Find the least e < n such that We,n does not meet pn, there exists a maximal
path p in Tn starting at 0 which meets it, and for any e′ < e if We′,n meets
pn then it also meets pn ∩ p. Take such a p which agrees with pn as long as
possible if there is one, otherwise let p = pn. Construct Tn+1 by attaching two
new nodes to the end of p. Let pn+1 be p plus one of these two nodes. The
pn converge to an infinite path which meets every infinite c.e. set and which is
coinfinite and hence not computable.

C2. For part (a), fix a computable coding of {0, 1}<ω and consider the
set of paths P through {0, 1}<ω. Each X ∈ P is a retraceable set with the
retracing function given by f(∅) = ∅, f(α ∗ 0) = α, and f(α ∗ 1) = α for all
α ∈ {0, 1}<ω. The solution follows since |P | = 2ℵ0 , but there are only countably
many computable sets.

For part (b), assume that A is a retraceable set with retracing function f .
Let W ⊂ A be an infinite c.e. set. We show that A is computable. To decide
if x ∈ A, enumerate W until a number y > x enters W . The iterates of f on y
(i.e. f(y), f(f(y)), . . .) list all the elements of A less than y in decreasing order.

C3. Fix a nonzero degree b and a set B ∈ b. We build a set A by specifying
finite initial segments fs of its characteristic function, and we insure that deg(A)
has the required properties. The requirements are as follows.

Re : A 6= ϕB
e

Se : B 6= ϕA
e

Te : (∃σ ⊂ A)
(
ϕσ

e (e) ↓ ∨ (∀τ ⊃ σ) ϕτ
e(e) ↑

)
The Re and Se requirements make A and B Turing incomparable. After the
construction, we will verify that Te together with a coding of B′ into A makes
A′ ≡T B′.
Construction:
Stage 0: Set f0 = ∅.
Stage s+1=4e+1 (Satisfy Re): Let n = |fs|. Use B′ as an oracle to determine
if ϕB

e (n) ↓= 0. If so, set fs+1(n) = 1. If not, set fs+1(n) = 0.

6



Stage s+1=4e+2 (Satisfy Se): Use 0′ as an oracle to test if

∃σ, τ ⊃ fs∃x, t
(
ϕσ

e,t(x) ↓6= ϕτ
e,t(x)

)
.

If not, let fs+1 = fs. Otherwise, look at a fixed computable list of all tuples
〈σ, τ, x, t〉. Pick the least tuple off this list which satisfies the condition above.
Use B as an oracle to check if B(x) = ϕσ

e (x). If so, let fs+1 = τ and if not, let
fs+1 = σ.

Stage s+1=4e+3 (Satisfy Te): Use 0′ as an oracle to test if

∃σ ⊃ fs∃t(ϕσ
e,t(e) ↓).

If so, take the least σ for which this holds (as above, this means the least
relative to some fixed computable list of all pairs 〈σ, t〉), and let fs+1 = σ. If
not, let fs+1 = fs.

Stage s+1=4e+4 (Code B′ into A): Let n = |fs|. Use B′ as an oracle and set
fs+1(n) = B′(e).
End of construction

Let A be such that χA = ∪fs. (Notice that the stages 4e+4 guarantee that
∪fs is total.) At stage 4e + 1, we clearly satisfy Re. To see that Se is satisfied,
suppose that B = ϕA

e . At stage 4e + 2, there must not have been appropriate
strings σ and τ , for if there were such strings, we would have diagonalized. It
follows that B is computable (giving a contraction) since B(x) = ϕσ

e (x) for
every string σ ⊃ fs for which ϕσ

e (x) ↓.
We verify that A′ ≡T B′. First, since the construction can all be done using

B′ as an oracle, the sequence fs, s ∈ ω, is B′ computable. Since e ∈ A′ if and
only if the answer to our initial question at stage 4e+3 is yes, B′ can determine
if e ∈ A′. Therefore, A′ ≤T B′.

To see that B′ ≤T A′, we need to show that the sequence fs, s ∈ ω, is A′

computable. This is sufficient since e ∈ B′ if and only if fs+1(n) = 1, where
s = 4e + 4 and n = |fs|. To see that the sequence fs is A′ computable (in fact,
it is A⊕0′ computable), we proceed by induction, checking the cases according
to the construction.

If s + 1 = 4e + 1 or s + 1 = 4e + 4, then |fs+1| = |fs| + 1 and if n = |fs|,
then fs+1(n) = A(n). Therefore, with oracle A we can determine fs+1 from
fs. If s + 1 = 4e + 3, then we used only a 0′ (≤T A′) oracle to determine fs+1

from fs. Finally, if s + 1 = 4e + 2, then 0′ (≤T A′) can determine if there are
appropriate σ and τ . If so, then we need only check (using oracle A) which of
these strings is an initial segment of A.
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