Qualifying Exam Logic January 19, 2001

Instructions:

If you signed up for Computability Theory, do two E and two C problems.

If you signed up for Set Theory, do two E and two S problems.

If you think that a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

E1. Show that every countable ordinal has the same order type as a closed set of reals.

E2. Show that the set $\{\langle n, m, p \rangle \mid n + m = p\}$ is not definable in the structure (\mathbb{N}, \cdot) .

E3. Gödel's First Incompleteness Theorem tells us that there is a Π sentence φ such that φ is true in $(\mathbb{N}, +, \cdot, 0, 1)$, but is not provable in Peano arithmetic. Is there a Σ sentence with this property? If so, write it down, and if not, prove that no Σ sentence has this property.

Recall that a Π sentence is one of the form $\forall x\psi$, where ψ is quantifier free, and a Σ formula is one of the form $\exists x\psi$, where ψ is quantifier free.

C1. Prove that there exists x such that

$$\forall y (x \in W_y \Leftrightarrow y \in W_x).$$

C2. Let A be c.e. Prove that there is no total A-computable function f such that for all e, if W_e is finite then $W_e \subseteq \{0, \ldots, f(e)\}$.

C3. Show that there is a noncomputable c.e. set A such that for any disjoint c.e. sets U and V with $A = U \cup V$, if A is U-computable then V is computable.

Note: c.e. is the same as r.e., computable is the same as recursive, A is U-computable is the same as A is Turing reducible to U or $A \leq_T U$, and W_e is the e^{th} c.e. set in some standard enumeration.

S1. Let $[\mathbb{R}]^{<\omega}$ denote the set of all finite subsets of the reals and $[\mathbb{R}]^{\omega}$ denote the set of all countably infinite subsets of the reals. Prove that CH is equivalent to the following statement:

(P) There is a function $F : [\mathbb{R}]^{<\omega} \to [\mathbb{R}]^{\omega}$ such that for every $A \in [\mathbb{R}]^{<\omega}$, we have $a \in F(A \setminus \{a\})$ for all but at most one $a \in A$.

S2. Prove there exists a family \mathcal{P} of perfect subtrees of $2^{<\omega}$ which when ordered by reverse inclusion is an ω_1 -Aronszajn tree.

Notation. An ω_1 -Aronszajn tree is a tree \mathcal{P} of height ω_1 such that \mathcal{P} has no uncountable branches and such that \mathcal{P}_{α} (the α^{th} level of \mathcal{P}) is countable for each α . A subtree $p \subseteq 2^{<\omega}$ is perfect iff every node in p has incompatible nodes above it.

Hint. You can construct \mathcal{P} inductively, with the root equal $2^{<\omega}$. You have to make sure that \mathcal{P} doesn't die at limit levels, so maintain the property that for any $\alpha < \beta$, $n < \omega$, and $p \in \mathcal{P}_{\alpha}$ there exists $q \in \mathcal{P}_{\beta}$ with $q \subseteq p$ and $q \cap 2^n = p \cap 2^n$.

S3. Prove that the following is consistent with $\neg CH$: There are cofinal $A_{\gamma} \subset \gamma$, for γ a countable limit ordinal, such that each A_{γ} has order type ω and such that whenever A is an unbounded subset of ω_1 , there is a closed unbounded $C \subseteq \omega_1$ such that $A \cap A_{\gamma}$ is infinite for all γ in C.

Hint. Use Cohen forcing, and use the γ^{th} Cohen real to code A_{γ} .

ANSWERS

E1. Using induction on $\alpha < \omega_1$ and also that any two open intervals are order isomorphic. This can also be proved without using the axiom of choice.

E2. Take any permutation σ of the primes. It extends to an automorphism of (\mathbb{N}, \cdot) using the fundamental theorem of arithmetic. But < is definable from + and $(\mathbb{N}, <)$ has no nontrivial automorphisms.

E3. Any Σ sentence true in \mathbb{N} is provable in Peano arithmetic. All one has to prove is that all quantifier free sentences true in \mathbb{N} are provable in PA. Let \underline{n} stand for $1 + 1 + 1 + \cdots + 1$ *n*-times (or 0 if n = 0). By induction one can prove that

$$PA \vdash \underline{n} + \underline{m} = \underline{n+m}$$
$$PA \vdash \underline{n} \cdot \underline{m} = \underline{nm}$$
$$n \neq m \text{ implies } PA \vdash \underline{n} \neq \underline{m}$$

This collection of sentences is known as Robinson's Q. It follows that any model of PA is a model of Q, hence any quantifier free sentence true in \mathbb{N} is true in all models of PA.

S1. Assume CH. Replace \mathbb{R} by ω_1 , and let $F(A) = A \cup \bigcup A = A \cup \bigcup_{\alpha \in A} \alpha$. Assume (P) and not CH. Take $C \subseteq \mathbb{R}$ of size ω_1 . There exists $a \in \mathbb{R} \setminus \bigcup_{b \in C} F(\{b\})$. For each $b \in C$ we have $b \in F(\{a\})$, so $F(\{a\})$ is uncountable, contradicting (P).

S2. A key argument for constructing the limit levels \mathcal{P}_{λ} is the fusion lemma: If $(p_n : n < \omega)$ are a descending sequence of perfect trees and $(k_n : n < \omega)$ is an increasing sequence such that for all n we have

 $p_{n+1} \cap 2^{k_n} = p_n \cap 2^{k_n}$ and

all nodes in $p_{n+1} \cap 2^{k_n}$ have at least two extensions in $p_{n+1} \cap 2^{k_{n+1}}$,

then $\bigcap_{n < \omega} p_n$ is a perfect tree. Another property which should be in the construction is that any distinct p, q at the same level should have no infinite branches in common (or equivalently $p \cap q$ is finite). \mathcal{P} has no ω_1 branch since there cannot be an ω_1 descending chain in the power set of $2^{<\omega}$.

S3. In the ground model, V, choose a map f_{γ} from ω onto γ for each countable limit γ . Let V[G] add Cohen reals, $\{r_{\alpha} : \alpha < \kappa\} \subset \omega^{\omega}$. To ensure $\neg CH$, let $\kappa \geq \omega_2$ (or, assume $V \models \neg CH$). Use r_{γ} to construct A_{γ} ; for example, let $A_{\gamma} = \{\xi_n^{\gamma} : n \in \omega\}$, where $\xi_0^{\gamma} = 0$, and ξ_{n+1}^{γ} is $f_{\gamma}(r_{\gamma}(n))$ if this is greater than $\max(f_{\gamma}(n), \xi_n^{\gamma})$, and $\max(f_{\gamma}(n), \xi_n^{\gamma} + 1)$ otherwise.

C1. Prove that there exists x such that

$$\forall y (x \in W_y \Leftrightarrow y \in W_x).$$

Proof: Define a computable function f such that $W_{f(x)} = \{y \mid x \in W_y\}$, and apply the Fixed-Point Theorem to get an index x_0 with $W_{x_0} = W_{f(x_0)}$.

C2. Let A be c.e. Prove that there is no total A-computable function f such that for all e, if W_e is finite then $W_e \subseteq \{0, \ldots, f(e)\}$.

Proof: " W_e is finite" is a Σ_2^0 -complete property, whereas for any A-computable function f, " $W_e \subseteq \{0, \ldots, f(e)\}$ " is Π_2^0 .

C3. Show that there is a noncomputable c.e. set A such that for any disjoint c.e. sets U and V, if $A = U \cup V$ and one of U or V computes A then the other is computable.

Proof by priority argument: Try to show V computable at x after U computes A(x). If later x enters A (and thus may now enter V), then either x enters U (and thus not V), or x enters only V and so we can kill the reduction from U to A at x (as A(x) is no longer correctly computed by U).

(Comment: This property is called mitotic and is known to be equivalent to autoredicibility, but this is not relevant here.)