Qualifying Exam
Logic
January 2003
Instructions:

If you signed up for Computability Theory, do two E and two C
problems.
If you signed up for Model Theory, do two E and two M problems.

If you think that a problem has been stated incorrectly, mention this
to the proctor and indicate your interpretation in your solution. In
such cases, do not interpret the problem in such a way that it becomes
trivial.

E1. Let 8 be an ordinal. Assume that § = X UY and that X,Y both
have order type a. Prove that g < a + a.

E2. Let £ have unary relations U, for n € w. Let ¥ be the set of
axioms which asserts that Uy 2 U; D Us--- and each U, \ U,y1, as
well as the complement of Uy, is infinite. Prove that X is complete.

E3. Let S be a uniformly computable list of decidable sets. That is,
S ={A, : n € w}, and the map (m,n) — Xa,(m) is computable. Let
B be the set of all finite boolean combinations of elements of S. Prove
that there is a decidable set which is not in B.



Computability Theory

C1. Recall that a set A C w is 1-generic if for every X set .S of strings
there is a string o C A such that either ¢ € S or V7 D o(7 ¢ S). Let
f be an injective computable function from w to w. Show that if G is
l-generic then f~!(G) is also 1-generic.

C2. Let A be a c.e. set. Suppose there is a computable function f
such that the sets Dy, Dysq1),... are pairwise disjoint and all have
nonempty intersection with A (here D), denotes the finite set with
canonical index k). Suppose further that there is a constant & such
that |Dsq,)| < & for all n. Prove that A is not simple.

C3. Show that the intersection of a simple and a creative set is creative.



Model Theory

M1. Let M = (M, <,+,0,...) be an o-minimal expansion of a divis-
ible, ordered, abelian group. Show from scratch that M has definable
Skolem functions; that is, for every n € N and every definable set
A C M™1 there is a definable function f : II,,(A) — M such that
(z, f(x)) € A for all x € T1,,(A), where II,, : M — M™ denotes the
projection on the first n coordinates.

Hint: if a,b € M are such that a < b, then one can canonically pick
an element from the interval (a,b) by choosing 3(a + b).

M2. Let C := (C,+,—,0,1) be the field of complex numbers, and let
A C C be the set of all algebraic numbers. Given a formula without
parameters ¢(z), where x = (x1,...,x,) denotes the tuple of all free
variables in ¢, we define

dim ¢(C") := max{dim(a) : a € $(M™), M = C},

where dim(a) is the pregeometry dimension of the tuple a obtained
from the algebraic closure operation. We call a point a € ¢(C) generic
if dim(a) = dim ¢(C). Prove that if n > 1, p(z) € Z[z] and ¢(z) is
the formula p(x) = 0, then ¢(A™) contains no generic point, but ¢(C™)
does.

M3. Z¢ = Z/67Z denotes the group of integers modulo 6. Prove that
the theory of the group (Zg)* is decidable.



Answers

E1. This problem was incorrectly stated. For the correct version see
the January 2008 exam.

E2. Let £ have unary relations U, for 0 < n < k. Let X be the set
of axioms which asserts that Uy D U; 2 -+ O Uy, and each U, \ U,4q
(for n < k), as well as Uy, and the complement of Uy, is infinite. Then
each X is Ny — categorical, and hence complete.

E3. Since one can effectively list all finite boolean expressions, one
can list B as {B, : n € w}, where the map (m,n) — Xg,(m) is
computable. Then the diagonal set D = {n : n ¢ B,} is decidable and
not in B.

C1. Suppose S C 2<% is ;. Let
S'={re2s : Joe S Vn<l|o|l f(n)<|r|and 7(f(n)) =0a(n)}

Then S’ is 3. Since G is 1-generic there is a 7 C G with either 7 € S’
or no extension of 7 in S’. The corresponding o € S witnesses the
same for f~}(G) and S.

C2. Let p < k be such that |Dy,)| = p for infinitely many n. Then

there is a computable function g : w — w such that |Dy))| = p for
all n. So we may assume that |Dyq,)| = & for all n.
For j =1,...,k let d; : w — w be the computable function such

that d;(n) is the jth element of Dy(,. Note that by hypothesis, for
every m there is at most one n such that m = d;(n) for some j €
{1,...,k}. Let 6 be the partial computable function

B(m) = {n if there exists j such that m = d;(n),

T otherwise.
Thus, if §(m) |, then m = d;(#(m)) for a unique j = j(m). Now let

g € {1,...,k} be such that for infinitely many n we have |[AND,| = g.
Let e be such that A = W,. Define the partial computable function

T3 6(m) 1, or 6(m) | and 6.(m) |,
W(m) = . DN
1 if 6(m) | and [{j # j(m) : ¢e(d;(0(m)) L} =k —q.
Then domy) C A and domq is infinite.
C3. Let S be simple and C' creative with computable f having the

property that if W, C C, then f(e) € C N W,. Given any e effectively
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enumerate a sequence e, such that
Wey =Wen S and We, ., =W, U{f(en)}.

Simultaneously enumerate S and wait for some f(e,) to appear in S.
If one does, put g(e) equal to the first that shows up. The function g
witnesses the creativity of CN.S. Suppose W, C C'NS. Then W.NS C
C. Hence the f(e,) are distinct and since S is simple, infinitely many
are in S. Since g(e) = f(e,) € S, we see that f(e,) ¢ We. Since all
the f(e,)’s are not in C, they are all not in C'N S.

MI1. Let n € N and A C M"™*! definable. For x € M™ put A, =
{y e M : (z,y) € A}, a subset of M. By o-minimality, for each
x € M™ the topological boundary B, of A, is definable and finite.
Put a(z) := min B, for each = € II,,(A), then a : II,(A) — M is a
definable function. Consider the disjoint definable sets

Ay i={x eIl (A): a(z) € A},
Ay :={zx eIl (A): Yy € A,(y > a(x))},
Az :=TI,(A) \ (A1 U Ay).
Note that (—oo,a(x)) C A, for all x € A3. We further partition Ay:
Ao i={zx € Ay: (a(z),4+00) C A,},
Agy 1= Ay \ Ay

Define b : Ayy — M by b(z) := min B, \ {a(z)}. We can now define
a Skolem function f : II,(A) — M for A:

a(x
Py =
a(x

) if x € Ay,
)+ 1 ifz e Ay,
;b(x) if x € Ago,
)—1 ifze As.

M2. Any tuple a € A™ has dimension 0, because ) is the largest
algebraically independent subset of {ay,...,a,}. On the other hand,
there is @ € C" such that dim(a) = n: this is proved by induction

on n, noting that for any ay,...,a,_1 € C, the algebraic closure of
{ai1,...,a,_1} in C is countable, so that there is a, € C that is not
algebraic over {a,...,a, 1}.

Now let n > 1 and p(z) € Z[z], and let M > C with underlying
set M. Then for any a € M" such that p(a) = 0, the latter equation
implies that dim(a) < n — 1. Hence dim¢(C") < n — 1. Now pick
a = (ay,...,a,_1) € C*" ! such that dim(a’) = n — 1. Since C is
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algebraically closed, there is a,, € C such that p(ay,...,a,) = 0. Hence
n—1 < dim(a) < dim¢(C") < n — 1. It follows that a is a generic
point of ¢(C™), and since n — 1 > 0, no point of ¢(A") is generic.

M3. Let T be the theory of abelian groups of exponent 6 (that is,
Ve (z+a+az+z+xz+x = 0)) such that there are infinitely many elements
of order 2 and infinitely many elements of order 3. Then every model
of T is a direct sum of an infinite abelian group of exponent 2 and an
infinite abelian group of exponent 3. So, T is Ny — categorical, and
hence complete.



Commented out problems

The following two problems were probably earlier versions of the
above which were accidentally left in the TeX code.

M1'. Let L be a first-order language. We say that an L-theory T has
definable Skolem functions if for any L-formula ¢(y,x), where y is a
finite tuple of variables and x is a single variable, there is an £L-formula

¥ (y, x) such that
T = VYy3ry(y, o),
T = VyVaVz((Y(y, ) ANd(y, 2)) =z = z),
T = Vy(Fzd(y, z) — 3z (y, 2) A ¢y, x)).

Show (without using cell decomposition) that if 7" is an o-minimal
theory extending the theory of divisible, ordered, abelian groups, then
T has definable Skolem functions.

M3.’ Prove that the theory of the group (Z/27Z)" is categorical in every
uncountable cardinal.

Hint: Show first that the theory of (Z/2Z)“ in the language £ =
(+,0) admits quantifier elimination.

answer:
M3. Let ¢(xy,...,x,,y) be a quantifier-free L-formula in which
exactly the variables xq,...,x, and y occur. We need to show that

Y(x) = Jyo(xy,...,x,,y) is equivalent in the theory T of the L-
structure M := (Z/27)% to a quantifier-free formula. Since M has
characteristic 2, ¢(x1,...,2,,y) is equivalent in T to either zy + --- +
Tpn+y=0o0rxz+---+x,+y #0. But for any ay,...,a, € M, we
have

ap+--+a,+ (a1 +---+a,) =0,
while

ar+--Fa,+1+a+--+a,) =1#0,

where 1 is the element (1/27,1/2Z,...) (in fact, any element different
from 0 will do). So in both cases, ¥ (x1,...,x,) is equivalent to the
L-formula 0 = 0. This proves quantifier elimination.

It follows that M is strongly minimal: let ¢(x,y) be an L-formula
with a single variable x and a tuple of variables y = (y1,...,y,), and let
M’ = T with underlying set M’. By quantifier elimination, ¢(x,y) is
equivalent in 7" to either x+y; +---+y, =0or v +y; +---+y, # 0. In
the first case, for every a € M™ the set ¢(M, a) has exactly one element
(because M’ is a group), while in the second case the set M \ ¢(M, a)

has exactly one element.
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Since T is strongly minimal and £ is finite, it follows that T is
categorical in every uncountable cardinal by the usual dimension theory
for strongly minimal structures (which closely mimics the categoricity
argument for algebraically closed fields). More precisely, let My, M |=
T such that |M;| = |[My] = kK > w. Since T is strongly minimal, the
(model-theoretic) algebraic closure relation gives rise to a pregeometry.
Let By and B, be maximal algebraically independent subsets of M;
and My, respectively. Since L is finite and |[M;| = |[Ms| > w, we must
have |B;| = |By| = K, so there is a bijection f : By — Bs. Since
maximal algebraically independent subsets are indiscernible, the map
f is elementary. Since M; = acl(B;) and My = acl(By), the map f
extends to an isomorphism f: M; — M.



