Qualifying Exam Logic January 2003

Instructions:

If you signed up for Computability Theory, do two E and two C problems.

If you signed up for Model Theory, do two E and two M problems.

If you think that a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

E1. Let β be an ordinal. Assume that $\beta = X \cup Y$ and that X, Y both have order type α . Prove that $\beta \leq \alpha + \alpha$.

E2. Let \mathcal{L} have unary relations U_n for $n \in \omega$. Let Σ be the set of axioms which asserts that $U_0 \supseteq U_1 \supseteq U_2 \cdots$ and each $U_n \setminus U_{n+1}$, as well as the complement of U_0 , is infinite. Prove that Σ is complete.

E3. Let S be a uniformly computable list of decidable sets. That is, $S = \{A_n : n \in \omega\}$, and the map $(m, n) \mapsto \chi_{A_n}(m)$ is computable. Let \mathcal{B} be the set of all finite boolean combinations of elements of S. Prove that there is a decidable set which is not in \mathcal{B} .

Computability Theory

C1. Recall that a set $A \subseteq \omega$ is 1-generic if for every Σ_1 set S of strings there is a string $\sigma \subseteq A$ such that either $\sigma \in S$ or $\forall \tau \supseteq \sigma(\tau \notin S)$. Let f be an injective computable function from ω to ω . Show that if G is 1-generic then $f^{-1}(G)$ is also 1-generic.

C2. Let A be a c.e. set. Suppose there is a computable function f such that the sets $D_{f(0)}, D_{f(1)}, \ldots$ are pairwise disjoint and all have nonempty intersection with \overline{A} (here D_k denotes the finite set with canonical index k). Suppose further that there is a constant k such that $|D_{f(n)}| \leq k$ for all n. Prove that A is not simple.

C3. Show that the intersection of a simple and a creative set is creative.

Model Theory

M1. Let $\mathcal{M} = (M, <, +, 0, ...)$ be an o-minimal expansion of a divisible, ordered, abelian group. Show from scratch that \mathcal{M} has definable Skolem functions; that is, for every $n \in \mathbb{N}$ and every definable set $A \subseteq M^{n+1}$, there is a definable function $f : \Pi_n(A) \longrightarrow M$ such that $(x, f(x)) \in A$ for all $x \in \Pi_n(A)$, where $\Pi_n : M^{n+1} \longrightarrow M^n$ denotes the projection on the first n coordinates.

Hint: if $a, b \in M$ are such that a < b, then one can canonically pick an element from the interval (a, b) by choosing $\frac{1}{2}(a + b)$.

M2. Let $\overline{\mathbb{C}} := (\mathbb{C}, +, -, 0, 1)$ be the field of complex numbers, and let $\mathbb{A} \subset \mathbb{C}$ be the set of all algebraic numbers. Given a formula without parameters $\phi(x)$, where $x = (x_1, \ldots, x_n)$ denotes the tuple of all free variables in ϕ , we define

$$\dim \phi(\mathbb{C}^n) := \max\{\dim(a) : a \in \phi(M^n), \mathcal{M} \succeq \overline{\mathbb{C}}\},\$$

where dim(a) is the pregeometry dimension of the tuple a obtained from the algebraic closure operation. We call a point $a \in \phi(\mathbb{C})$ generic if dim(a) = dim $\phi(\mathbb{C})$. Prove that if n > 1, $p(x) \in \mathbb{Z}[x]$ and $\phi(x)$ is the formula p(x) = 0, then $\phi(\mathbb{A}^n)$ contains no generic point, but $\phi(\mathbb{C}^n)$ does.

M3. $\mathbb{Z}_6 = \mathbb{Z}/6\mathbb{Z}$ denotes the group of integers modulo 6. Prove that the theory of the group $(\mathbb{Z}_6)^{\omega}$ is decidable.

Answers

E1. This problem was incorrectly stated. For the correct version see the January 2008 exam.

E2. Let \mathcal{L}_k have unary relations U_n for $0 \le n \le k$. Let Σ_k be the set of axioms which asserts that $U_0 \supseteq U_1 \supseteq \cdots \supseteq U_k$ and each $U_n \setminus U_{n+1}$ (for n < k), as well as U_k and the complement of U_0 , is infinite. Then each Σ_k is \aleph_0 – categorical, and hence complete.

E3. Since one can effectively list all finite boolean expressions, one can list \mathcal{B} as $\{B_n : n \in \omega\}$, where the map $(m, n) \mapsto \chi_{B_n}(m)$ is computable. Then the diagonal set $D = \{n : n \notin B_n\}$ is decidable and not in \mathcal{B} .

C1. Suppose
$$S \subseteq 2^{<\omega}$$
 is Σ_1 . Let
 $S' = \{ \tau \in 2^{<\omega} : \exists \sigma \in S \ \forall n < |\sigma| \ f(n) < |\tau| \text{ and } \tau(f(n)) = \sigma(n) \}$

Then S' is Σ_1 . Since G is 1-generic there is a $\tau \subseteq G$ with either $\tau \in S'$ or no extension of τ in S'. The corresponding $\sigma \in S$ witnesses the same for $f^{-1}(G)$ and S.

C2. Let $p \leq k$ be such that $|D_{f(n)}| = p$ for infinitely many n. Then there is a computable function $g: \omega \longrightarrow \omega$ such that $|D_{f(g(n))}| = p$ for all n. So we may assume that $|D_{f(n)}| = k$ for all n.

For $j = 1, \ldots, k$ let $d_j : \omega \longrightarrow \omega$ be the computable function such that $d_j(n)$ is the *j*th element of $D_{f(n)}$. Note that by hypothesis, for every *m* there is at most one *n* such that $m = d_j(n)$ for some $j \in \{1, \ldots, k\}$. Let θ be the partial computable function

$$\theta(m) := \begin{cases} n & \text{if there exists } j \text{ such that } m = d_j(n), \\ \uparrow & \text{otherwise.} \end{cases}$$

Thus, if $\theta(m) \downarrow$, then $m = d_j(\theta(m))$ for a unique j = j(m). Now let $q \in \{1, \ldots, k\}$ be such that for infinitely many n we have $|\bar{A} \cap D_{f(n)}| = q$. Let e be such that $A = W_e$. Define the partial computable function

$$\psi(m) := \begin{cases} \uparrow & \text{if } \theta(m) \uparrow, \text{ or } \theta(m) \downarrow \text{ and } \phi_e(m) \downarrow, \\ 1 & \text{if } \theta(m) \downarrow \text{ and } |\{j \neq j(m) : \phi_e(d_j(\theta(m)) \downarrow\}| \ge k - q. \end{cases}$$

Then $\operatorname{dom}\psi \subseteq \overline{A}$ and $\operatorname{dom}\psi$ is infinite.

C3. Let S be simple and C creative with computable f having the property that if $W_e \subseteq \overline{C}$, then $f(e) \in \overline{C} \cap \overline{W_e}$. Given any e effectively

enumerate a sequence e_n such that

$$W_{e_0} = W_e \cap S$$
 and $W_{e_{n+1}} = W_{e_n} \cup \{f(e_n)\}.$

Simultaneously enumerate S and wait for some $f(e_n)$ to appear in S. If one does, put g(e) equal to the first that shows up. The function g witnesses the creativity of $C \cap S$. Suppose $W_e \subseteq \overline{C \cap S}$. Then $W_e \cap S \subseteq \overline{C}$. Hence the $f(e_n)$ are distinct and since S is simple, infinitely many are in S. Since $g(e) = f(e_n) \in S$, we see that $f(e_n) \notin W_e$. Since all the $f(e_n)$'s are not in C, they are all not in $C \cap S$.

M1. Let $n \in \mathbb{N}$ and $A \subseteq M^{n+1}$ definable. For $x \in M^n$ put $A_x := \{y \in M : (x, y) \in A\}$, a subset of M. By o-minimality, for each $x \in M^n$ the topological boundary B_x of A_x is definable and finite. Put $a(x) := \min B_x$ for each $x \in \prod_n(A)$, then $a : \prod_n(A) \longrightarrow M$ is a definable function. Consider the disjoint definable sets

$$A_{1} := \{ x \in \Pi_{n}(A) : a(x) \in A_{x} \}, A_{2} := \{ x \in \Pi_{n}(A) : \forall y \in A_{x}(y > a(x)) \}, A_{3} := \Pi_{n}(A) \setminus (A_{1} \cup A_{2}).$$

Note that $(-\infty, a(x)) \subseteq A_x$ for all $x \in A_3$. We further partition A_2 :

$$A_{21} := \{ x \in A_2 : (a(x), +\infty) \subseteq A_x \},\$$

$$A_{22} := A_2 \setminus A_{21}.$$

Define $b: A_{22} \longrightarrow M$ by $b(x) := \min B_x \setminus \{a(x)\}$. We can now define a Skolem function $f: \prod_n(A) \longrightarrow M$ for A:

$$f(x) := \begin{cases} a(x) & \text{if } x \in A_1, \\ a(x) + 1 & \text{if } x \in A_{21}, \\ \frac{a(x) + b(x)}{2} & \text{if } x \in A_{22}, \\ a(x) - 1 & \text{if } x \in A_3. \end{cases}$$

M2. Any tuple $a \in \mathbb{A}^n$ has dimension 0, because \emptyset is the largest algebraically independent subset of $\{a_1, \ldots, a_n\}$. On the other hand, there is $a \in \mathbb{C}^n$ such that $\dim(a) = n$: this is proved by induction on n, noting that for any $a_1, \ldots, a_{n-1} \in \mathbb{C}$, the algebraic closure of $\{a_1, \ldots, a_{n-1}\}$ in \mathbb{C} is countable, so that there is $a_n \in \mathbb{C}$ that is not algebraic over $\{a_1, \ldots, a_{n-1}\}$.

Now let n > 1 and $p(x) \in \mathbb{Z}[x]$, and let $\mathcal{M} \succeq \overline{\mathbb{C}}$ with underlying set M. Then for any $a \in M^n$ such that p(a) = 0, the latter equation implies that $\dim(a) \leq n - 1$. Hence $\dim \phi(\mathbb{C}^n) \leq n - 1$. Now pick $a' = (a_1, \ldots, a_{n-1}) \in \mathbb{C}^{n-1}$ such that $\dim(a') = n - 1$. Since \mathbb{C} is algebraically closed, there is $a_n \in \mathbb{C}$ such that $p(a_1, \ldots, a_n) = 0$. Hence $n-1 \leq \dim(a) \leq \dim \phi(\mathbb{C}^n) \leq n-1$. It follows that a is a generic point of $\phi(\mathbb{C}^n)$, and since n-1 > 0, no point of $\phi(\mathbb{A}^n)$ is generic.

M3. Let T be the theory of abelian groups of exponent 6 (that is, $\forall x(x+x+x+x+x+x=0)$) such that there are infinitely many elements of order 2 and infinitely many elements of order 3. Then every model of T is a direct sum of an infinite abelian group of exponent 2 and an infinite abelian group of exponent 3. So, T is \aleph_0 – categorical, and hence complete.

Commented out problems

The following two problems were probably earlier versions of the above which were accidentally left in the TeX code.

M1'. Let \mathcal{L} be a first-order language. We say that an \mathcal{L} -theory T has definable Skolem functions if for any \mathcal{L} -formula $\phi(y, x)$, where y is a finite tuple of variables and x is a single variable, there is an \mathcal{L} -formula $\psi(y, x)$ such that

$$\begin{split} T &\models \forall y \exists x \psi(y, x), \\ T &\models \forall y \forall x \forall z ((\psi(y, x) \land \psi(y, z)) \to x = z), \\ T &\models \forall y (\exists x \phi(y, x) \to \exists x (\psi(y, x) \land \phi(y, x)). \end{split}$$

Show (without using cell decomposition) that if T is an o-minimal theory extending the theory of divisible, ordered, abelian groups, then T has definable Skolem functions.

M3.' Prove that the theory of the group $(\mathbb{Z}/2\mathbb{Z})^{\omega}$ is categorical in every uncountable cardinal.

Hint: Show first that the theory of $(\mathbb{Z}/2\mathbb{Z})^{\omega}$ in the language $\mathcal{L} = (+, 0)$ admits quantifier elimination.

answer:

M3. Let $\phi(x_1, \ldots, x_n, y)$ be a quantifier-free \mathcal{L} -formula in which exactly the variables x_1, \ldots, x_n and y occur. We need to show that $\psi(x) := \exists y \phi(x_1, \ldots, x_n, y)$ is equivalent in the theory T of the \mathcal{L} structure $\mathcal{M} := (\mathbb{Z}/2\mathbb{Z})^{\omega}$ to a quantifier-free formula. Since \mathcal{M} has characteristic 2, $\phi(x_1, \ldots, x_n, y)$ is equivalent in T to either $x_1 + \cdots + x_n + y = 0$ or $x_1 + \cdots + x_n + y \neq 0$. But for any $a_1, \ldots, a_n \in M$, we have

 $a_1 + \dots + a_n + (a_1 + \dots + a_n) = 0,$

while

 $a_1 + \dots + a_n + (1 + a_1 + \dots + a_n) = 1 \neq 0,$

where 1 is the element $(1/2\mathbb{Z}, 1/2\mathbb{Z}, ...)$ (in fact, any element different from 0 will do). So in both cases, $\psi(x_1, ..., x_n)$ is equivalent to the \mathcal{L} -formula 0 = 0. This proves quantifier elimination.

It follows that \mathcal{M} is strongly minimal: let $\phi(x, y)$ be an \mathcal{L} -formula with a single variable x and a tuple of variables $y = (y_1, \ldots, y_n)$, and let $\mathcal{M}' \models T$ with underlying set M'. By quantifier elimination, $\phi(x, y)$ is equivalent in T to either $x + y_1 + \cdots + y_n = 0$ or $x + y_1 + \cdots + y_n \neq 0$. In the first case, for every $a \in M^n$ the set $\phi(M, a)$ has exactly one element (because \mathcal{M}' is a group), while in the second case the set $M \setminus \phi(M, a)$ has exactly one element. Since T is strongly minimal and \mathcal{L} is finite, it follows that T is categorical in every uncountable cardinal by the usual dimension theory for strongly minimal structures (which closely mimics the categoricity argument for algebraically closed fields). More precisely, let $\mathcal{M}_1, \mathcal{M}_2 \models$ T such that $|\mathcal{M}_1| = |\mathcal{M}_2| = \kappa > \omega$. Since T is strongly minimal, the (model-theoretic) algebraic closure relation gives rise to a pregeometry. Let B_1 and B_2 be maximal algebraically independent subsets of \mathcal{M}_1 and \mathcal{M}_2 , respectively. Since \mathcal{L} is finite and $|\mathcal{M}_1| = |\mathcal{M}_2| > \omega$, we must have $|B_1| = |B_2| = \kappa$, so there is a bijection $f : B_1 \longrightarrow B_2$. Since maximal algebraically independent subsets are indiscernible, the map f is elementary. Since $\mathcal{M}_1 = \operatorname{acl}(B_1)$ and $\mathcal{M}_2 = \operatorname{acl}(B_2)$, the map fextends to an isomorphism $\tilde{f} : \mathcal{M}_1 \longrightarrow \mathcal{M}_2$.