
Qualifying Exam
Logic

August 2003

Instructions:

If you signed up for Computability Theory, do two E and two C problems.
If you signed up for Model Theory, do two E and two M problems.
If you signed up for Set Theory, do two E and two S problems.

If you think that a problem has been stated incorrectly, mention this
to the proctor and indicate your interpretation in your solution. In such
cases, do not interpret the problem in such a way that it becomes trivial.

E1. Prove that there are countable Cα ⊆ R for α < 2ℵ0 such that Cα

and Cβ are not isomorphic (with respect to the usual order on the real
numbers) whenever α < β < 2ℵ0 .

E2. Let L = {<,U}, where U is a unary predicate. Let T be the set of
L–sentences which says that < is a dense total order without first or last
elements and U is closed downward; i.e.:

∀x, y[U(y) ∧ x < y → U(x)] .

a. Up to isomorphism, how many countable models does T have?
b. Prove that {ϕ : T ` ϕ} is computable.

E3. If f : ω → ω, then fn denotes f applied n times; e.g., f 3(0) =
f(f(f(0))). Give an example of a (total) computable f such that {fn(0) :
n ∈ ω} is not computable.

Terminology. A set is computable iff its characteristic function is com-
putable.
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Computability Theory

C1. Prove that there is no (total) computable f : ω × ω → ω such
that for all x, y ∈ ω: If Wx and Wy are both finite, then f(x, y) = 1 iff
|Wx| = |Wy|.

Note: If Wx and Wy are not both finite, then f(x, y) can be anything.
We = dom(ϕe) is the eth c.e. set.

C2. Prove that there exists a computable linear order, (ω, /), isomorphic
to ω + ω∗ such that the ω part and the ω∗ part are not computable (as
subsets of ω). Here, ω∗ denotes the reverse order type of ω, and the type
ω+ω∗ consists of an ω∗ stacked on top of an ω. So, the ω part is the set
of all n ∈ ω such that {m ∈ ω : m / n} is finite.

C3. For V ⊆ ω × ω define Ve = {x : 〈e, x〉 ∈ V }. Prove or disprove:

1. There exists a computably enumerable V ⊆ ω × ω such that
{Ve : e ∈ ω} is the set of all computable sets.

2. There exists a computable V ⊆ ω × ω such that {Ve : e ∈ ω} is
the set of all computable sets.
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Model Theory

M1. Let (F ; +, ·, <) be an ordered field. Prove that · is not first-order
definable in (F ; +, <). Here, “first-order definable” allows the use of a
fixed finite list of elements of F as parameters.

Hint. Prove that the theory of ordered abelian divisible groups is model
complete.

M2. Let T be a complete L-theory with infinite models. Assume that L
contains the symbol < and that T contains the axioms that < is a total
order. Assume that |L| = ℵ1. Prove that T is not ℵ2–categorical.

M3. Let M = (M ;<, . . . ) be an expansion of a dense linear order
without endpoints, and assume that any N elementarily equivalent to
M is o-minimal. Prove that every definable (with parameters) subset of
M2 is a finite union of definable cells.

Hint. To simplify things, you may use the weak version of the Mono-
tonicity Theorem: if f : (a, b) → M is definable, where a, b ∈ M ∪
{−∞,+∞}, then there are a0 = a < a1 < · · · < ak < ak+1 = b such that
for every i ∈ {0, . . . , k}, the restriction of f to the interval (ai, ai+1) is
continuous.

Terminology. A cell in M is either a point or an open interval with
endpoints in M ∪ {−∞,+∞}. A set C ⊆ M2 is a cell if its projection
I on the first coordinate is a cell and there are definable, continuous
f, g : I →M such that either:

a. C = {(x, y) : x ∈ I , y = f(x)}, or
b. C = {(x, y) : x ∈ I , y > f(x)}, or
c. C = {(x, y) : x ∈ I , y < f(x)}, or
d. C = {(x, y) : x ∈ I , g(x) < y < f(x)} and g(x) < f(x) for all
x ∈ I.

A model M is o-minimal iff every definable with parameters subset of
M is a finite union of cells.
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Set Theory

S1. Assume V = L. Assume that A ≺ L(ω2) and that A is uncountable.
Prove that ω1 ⊆ A.

S2. Assume MA + ¬CH. Fix fn ∈ {0, 1}ω1 for n ∈ ω. Prove that there
is an infinite S ⊆ ω and a g ∈ {0, 1}ω1 such that 〈fn : n ∈ S〉 converges
to g, in the sense that for α, {n ∈ S : fn(α) 6= g(α)} is finite.

S3. F ⊆ ωω is a dominating family iff ∀g ∈ ωω ∃f ∈ F(g ≤ f); here,
g ≤ f means g(x) ≤ f(x) for all x ∈ ω. Now, let M be a countable
transitive model for ZFC, let P = Fn(ω, ω) (finite partial functions from
ω to ω), and let G be P–generic over M . Let F = ωω ∩M . Prove that
F is not a dominating family in M [G].
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Answers

E1. List P(ω) as {Eα : α < 2ℵ0}, and let

Cα =
⋃
n∈ω

[3n, 3n+ 1] ∪
⋃

n∈Eα

{3n+ 2} .

Prove that there are countable for α < 2ℵ0 such that Cα and Cβ are
not isomorphic (with respect to the usual order on the real numbers)
whenever α < β < 2ℵ0 .

E2. Up to isomorphism, countable models of T are of the form A =
(Q;<,UA), and there are exactly five possibilities:

1. UA = ∅.
2. UA = Q.
3. UA = (−∞, q) for some q ∈ Q.
4. UA = (−∞, q] for some q ∈ Q.
5. UA = (−∞, x) for some x ∈ R\Q.

Each of these may be characterized by a first-order sentence, σ1, . . . , σ5,
and each T ∪ {σi} is ℵ0–categorical, and hence decidable. Then, T ` ϕ
iff every T ∪ {σi} ` ϕ.

E3. Let g : ω → ω be computable but ran(g) not computable. Assume
also that g(0) = 0 and g is 1-1. Define f(x) = 2030 = 1 unless x is of the
form 2i3j for some i, j. Then, define f(2i3j) to be 2g(j+1)30 if g(j) = i
and 2i3j+1 otherwise. Then 2i ∈ {fn(0) : n ∈ ω} iff i ∈ ran(g).

C1. Assume we had such an f . Let E ⊂ ω be c.e. but not computable,
with 0 ∈ E. Then A := {(n, n) : n ∈ E} is c.e., and using the sm

n

Theorem, there is a computable g : ω → ω such that Wg(n) = An for all
n, where An = {y : (n, y) ∈ A}. But then |Wg(n)| is 1 for n ∈ E and 0
for n /∈ E, and E = {x : f(x, 0) = 1} would be decidable.

C2. Construct a computable sequences �s of binary relations on initial
segments of ω as follows. Each �s is a strict linear ordering. Each
extends the next. In addition, we have �s-Dedekind cuts Ls and Rs, i.e.,
everything in Ls is �s left of everything in Rs.

Stage s=2n: put 2n, 2n+ 1 into the cut between Ls and Rs, i.e.,
Ls+1 = Ls ∪ {2n}
Rs+1 = Rs ∪ {2n+ 1}
Ls �s+1 2n�s+1 2n+ 1 �s+1 Rs

Stage s=2n+1: search for the least e < s if any exists so that
(a) We,s ∩ Ls = ∅
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(b) We,s contains the �s-rightmost 2e+ 1 elements of Rs.
Move the gap over so that Rs+1 is the �s-rightmost 2e elements (i.e.

now Ls+1 meets We. If no e exists do nothing.

We claim now that the resulting order is isomorphic to ω+ω∗ and that
the ω∗ part is not We for any e. Note that the left hand cut only increases
(in fact, is an infinite ce set) and since even stages only add things at its
end it eventually grows up into an isomorphic copy of ω.

Suppose inductively that each We acts only finitely many times. So
suppose we are at a stage where no ê < e will ever act again. Since larger
ê > e cannot move the rightmost 2e+1 elements out of R it must be that
once they are in R they always remain in R unless We acts. It follows
that We will act at most one more time, if it does then We meets L, if
doesn’t it must be that We fails to contain the last 2e+ 1 elements of R.
In either case the last 2e+1 elements of R will never be disturbed again.

C3. (1) This is true using increasing enumerations. At stage s put Ve,s

to be the range of φe,s on the largest n < s such that φe,s restricted to n
is a strictly increasing total map. If φe is not a strictly increasing total
function, then Ve is finite (and clearly we will get all finite sets this way).
If it is, then Ve is computable, since it has an increasing enumeration.
Since all infinite computable sets have a strictly increasing enumeration,
we get all of them. (2) This is false by the usual diagonalization.

M1. Assume that · is first-order definable, using p1, . . . , pn as param-
eters. WLOG, 0 < p1 < · · · < pn. Taking an elementary extension of
(F ; +, ·, <), we may assume, WLOG, that F is non-archimedean. Fix an
infinitely large a ∈ F with a > pn, and let G be the set of all rational com-
binations of a, p1, . . . , pn. Then (G; +, <) is an ordered divisible abelian
group, so (G; +, <) ≺ (F ; +, <). Under the assumption that product is
definable, the restriction of · to G would make (G; +, ·, <) into an ordered
field, which is impossible, since a2 /∈ G.

Proof of Hint: This is an exercise in Chang and Keisler.
If we expand the language to be +, <, >, ≤, ≥, 0, − with obvious

definitions, then the theory of ordered abelian divisible groups eliminates
quantifiers. To see this, let ∃x ψ(x) be a formula such that ψ(x) is
conjunction of atomic formulas of the form
nix ≤ yi, nix ≥ yi, nix < yi, or nix > yi

where each ni is a positive integer and yi is a term not involving x. We
can reduce to this case by replacing u 6= v by u < v or v < u and u = v
by u ≤ v and v ≤ u, and ¬u ≤ v by v < u and so forth.

Now since nx < y iff mnx < my, and so forth, by taking the product
of all the ni we may assume that they are all the same. Since the groups
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are divisible we can replace n by 1. Finally to eliminate x replace x < yi

and x > yj by yj < yi and so forth for ≤, etc.

M2. First assume that there is no greatest element. Using a compactness
argument, it is easy to prove that for any modelM of size ℵ2 there exist an
elementary extension N of size ℵ2 with some element of N strictly greater
than all elements of M . By using elementary chains of length either ω
or ω1 we can get models of size ℵ2 with cofinality ω and ω1. Clearly
they can’t be isomorphic. If there is a last element, then either there
is a greatest element with no immediate predescessor and only finitely
many successors or every model ends in an ω∗. In either case we add new
elements just below this tail segment and above all the old elements.

Another way to do this is to use the fact that there must be models of
size ℵ2 which realize only ℵ1 types over every subset of size ℵ1. However,
for a theory with a total order, one can always construct models which
fail to have this property.

M3. Let A ⊆M2 be definable, and consider the definable set

B := {(x, y) : y is in the boundary of the fiber Ax} .

By o-minimality, each fiber Bx is finite, so by the assumption and the
compactness theorem, there is k ∈ N such that |Bx| ≤ k for all x ∈ M .
Hence by o-minimality, M can be partitioned into finitely many cells such
that if I is one of these cells, there is an l ∈ {0, . . . , k} such that |Bx| = l
for all x ∈ I. So there are definable functions f1, . . . , fl : I → M such
that f1(x) < · · · < fl(x) for all x ∈ I and fi(x) ∈ Bx for all x and i. By
the Monotonicity Theorem, after shrinking I if necessary we may assume
that each fi is continuous. Hence A ∩ (I ×M) is a finite union of cells,
and since I was arbitrary, the claim follows.

S1. Let M ∼= A ≺ L(ω2), with M transitive and j : M → A the
isomorphism. Then M = L(δ) for some δ ≥ ω1. Fix α < ω1, and then fix
R ⊂ ω× ω such that R well-orders ω in type α. Then R ∈M by V = L,
so R = j(R) ∈ A, so α ∈ A by A ≺ L(ω2).

S2. Let U be a non-principal ultrafilter on ω and define g(α) to be
the i ∈ {0, 1} such that Kα := {n ∈ ω : fn(α) = i} ∈ U . Then, use
MA + ¬CH to get S so that S ⊆∗ Kα for all α < ω1.

S3. Let τ be the P–name for the generic function added. If F were a
dominating family in M [G], then in M we would have a p and an f ∈ ωω

such that p  τ ≤ f̌ . Now, extending p to make p(n) > f(n) for some n
yields a contradiction.
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