
Qualifying Exam
Logic

January 2004

Instructions:

If you signed up for Computability Theory, do two E and two C problems.
If you signed up for Model Theory, do two E and two M problems.
If you signed up for Set Theory, do two E and two S problems.

If you think that a problem has been stated incorrectly, mention this
to the proctor and indicate your interpretation in your solution. In such
cases, do not interpret the problem in such a way that it becomes trivial.

E1. If F ⊆ λλ, say that F covers λ iff for all α, β < λ there is an f ∈ F
such that either f(α) = β or f(β) = α. Let κ be any infinite cardinal
Prove that κ+ can be covered by a family of κ many functions, but not
by any family of fewer than κ functions.

E2. Let L = {+, 0}. Let Σ be the theory of infinite abelian groups plus
the axiom ∀x[x+x = 0 ∨ x+x+x = 0]. Prove that Σ is decidable (i.e.,
there is an algorithm for deciding whether Σ ` ϕ).

E3. For the following, give either a proof or a counter-example. α, β
denote ordinals:

a. ∀α, β > ω2 [α+ β = β + α → α · β = β · α].
b. ∀α, β > ω2 [α · β = β · α → α+ β = β + α].
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Computability Theory

C1. Suppose we are given x, y ∈ 2ω, d ∈ ω, and a partial computable
ψ : 2<ω×d→ 2<ω such that for every n < ω, there exists i < d such that
ψ(y�n, i) ↓= x�n. Prove that x ≤T y. (Here x�n ∈ 2n is the restriction
of x to the domain n.)

C2. Let A,B ⊆ ω. Say that A ≤tt B (A is truth-table reducible to B)
if there is a computable function f such that x ∈ A iff Dy is an initial
segment of B for some y ∈ Df(x). (Here Dy is the finite set S with
canonical index y, i.e., y =

∑
n∈S

2n.)

Show that A ≤tt B iff there is a Turing functional Φ such that A =
Φ(B) and Φ(X) is total for all oracles X.

C3. Prove that the 1-degrees do not form an upper semilattice as follows:

a. Construct two Turing-incomparable simple sets A and B.
b. Suppose that deg1(A) and deg1(B) have a least upper bound

deg1(D). Show that for some z /∈ D, A,B ≤1 D ∪ {z}. (Hint:
Using simplicity, first find z, z′ /∈ D such that A ≤1 D ∪ {z} and
B ≤1 D ∪ {z′}.)

c. Show that D ≤1 A ⊕ B and that therefore D is simple. (Here
A⊕B = {2x | x ∈ A} ∪ {2x+ 1 | x ∈ B}.)

d. Show that D ∪ {z} <1 D for a contradiction.
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Model Theory

M1. Prove that the following are equivalent for a cardinal κ:

a. κ ≥ 2ℵ0 .
b. Whenever F is a family of elementarily equivalent countable struc-

tures for a countable language, there is a model B with |B| = κ
such that each A ∈ F is elementarily embeddable into B.

M2. Let L = {+,−, ·, 0, 1}. Let Σ in L be the theory of algebraically
closed fields of characteristic 0. Let L′ = L ∪ {U} where U is 1-place.
Let Σ′ in L′ be the theory of pairs of models of Σ, so a model of Σ′ is an
algebraically closed field of characteristic 0 in which U is an algebraically
closed proper subfield. Prove that Σ′ is complete and model-complete.

M3. Assume that L contains only predicate symbols. Say that a struc-
ture A is partitionable iff it is the disjoint union of two substructures each
of which is isomorphic to A. Prove or disprove: If A is partitionable and
A ≡ B, then B is partitionable.

Here, A is the disjoint union of A1,A2 iff A1,A2 are submodels of A
and A is the disjoint union of A1, A2.
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Set Theory

S1. Let κ be an uncountable regular cardinal. Call S ⊆ [κ]ω stationary
iff for every f : [κ]<ω → κ there exists a ∈ S with f([a]<ω) ⊆ a. Assume
that S is stationary and S =

⋃
i∈ω Si. Prove that some Si is stationary.

[κ]ω denotes the family of countably infinite subsets of κ, and [κ]<ω

denotes the family of finite subsets of κ.

S2. ZFC − P denotes the axioms of ZFC with Power Set deleted. Let
Σ be ZFC − P plus the axiom that there is an uncountable ordinal. If
M |= Σ, then (ω1)

M denotes what M thinks is the smallest uncountable
ordinal. Prove that there are α, β, γ with ω < α < β < γ < ω1 such that
L(β) |= Σ, L(γ) |= Σ, and α = (ω1)

L(β) = (ω1)
L(γ).

S3. Let M be a countable transitive model for ZFC , let P = Fn(ω, ω)
(finite partial functions from ω to ω), and let G be P–generic over M . Let
κ be an infinite cardinal of M . Prove that the following are equivalent:

a. cf(κ) 6= ω in M .
b. Whenever S ⊆ κ in M [G], there is an A ⊆ κ in M such that
|A| = κ in M and either A ⊆ S or A ∩ S = ∅.
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Answers

E1. Let gα : κ→ α + 1 be onto for each α < κ+. For each ξ < κ define
fξ : κ+ → κ+ by fξ(α) = gα(ξ). Let F = {fξ : ξ < κ}. Given α, β < κ+

suppose that α ≤ β. Choose ξ so that gβ(ξ) = α. Then fξ(β) = α.
Now suppose |F| < κ. By a Löwenheim-Skolem argument find α with

κ < α < κ+ so that for every f ∈ F and for every δ < α we have that
f(δ) < α. Since α has cardinality κ and |F| < κ there exists β < α with
β 6= f(α) for each f ∈ F . But then there is no f ∈ F with f(β) = α or
f(α) = β.

E2. Let En be the assertion that the group has exponent n — that is
∀x[nx = 0]. Note that the given axiom is equivalent to E2 ∨ E3, since if
x has order 2 and y has order 3, then x+ y has order 6.

Then Σ ` ϕ iff Σ ∪ {E2} ` ϕ and Σ ∪ {En} ` ϕ.
But for prime n, Σ ∪ {En} is ℵ0 – categorical, hence complete, and

hence decidable.
To see that it is categorical in any infinite cardinality note that any

model of En can be viewed as a vector space over the field of size n.
Any two such vector spaces will be isomorphic if they have the same
dimension.

E3. Both are false:

a. α = ω3, β = ω3 · 2,
α+ β = β + α = ω3 · 3, α · β = ω6 · 2, β · α = ω6.

b. α = ω3, β = ω4,
α · β = β · α = ω7, α+ β = ω4, β + α = ω4 + ω3.

C1. For each n let Sn = {s ∈ 2n : ∃i < d [φ(y�n, i) ↓= s]}. Let k be
the largest integer such that there are infinitely many n with |Sn| = k.
Then k ≥ 1 (since x�n ∈ Sn) and k ≤ d. Note that there is an infinite
sequence ni, computable in y, such that n0 < n1 < n2 < · · · and each
|Sni

| = k. Let T be the tree of all sequences s such that for each ni < |s|
we have that s�ni ∈ Sni

. The tree T is computable in y and has at
most k infinite paths. Hence each of these infinite paths is isolated and
is therefor computable in T , and hence in y.

C2.

(⇒) Given the computable function f , define the Turing functional Φ
as follows: For any argument x of Φ, compute z = 1 + max

y∈Df(x)

Dy.

It is now easy to see that one can define Φσ(x) for each σ ∈ 2z.
5



(⇐) Given x, find by compactness of 2ω a number z such that Φσ(x)
is defined for all σ ∈ 2z. It is now easy to find the appropriate set
Df(x).

C3.

a. A simple finite-injury priority argument mixing simplicity with
Friedberg-Muchnik strategies.

b. Let A,B ≤1 D via computable 1–1 functions f and g, say. Sup-
pose D ∪ ran(f) = ω. Then one can easily find a computable 1–1
function h witnessing D ≤1 A, thus contradicting B 6≤1 A. So
fix z /∈ D ∪ ran(f), thus A ≤1 D ∪ {z} via f also. Similarly find
z′ /∈ D such that B ≤ D ∪ {z′} via h′, say. Now slightly modify
h′ to obtain B ≤1 D ∪ {z}.

c. Clearly A,B ≤1 A⊕B, and A⊕B must be simple, so D ≤1 A⊕B
must also be simple.

d. Since D contains an infinite computable subset S, argue that
D ∪ {z} ≤1 D by “shifting within S”. If D ≤1 D ∪ {z} via
some computable 1–1 function k, say, then the infinite c.e. set
{z, k(z), k(k(z)), . . . } is in D, contradicting the simplicity of D.

M1. For (a) → (b): Let Σ be the theory of the structures in F , let B0 be
an ℵ1–saturated model of Σ with |B0| = 2ℵ0 , and let B be an elementary
extension of B0 of size κ.

For (b) → (a): Let A0 = (ω; +, ·, 0, S). Let F be the family of all
countable models which are elementarily equivalent to A0. If each A ∈ F
is elementarily embeddable into B, then B realizes all types over {Sn(0) :
n ∈ ω}, so that |B| ≥ 2ℵ0 .

M2. Completeness follows from model-completeness because there is a
model M |= Σ which embeds into every model of Σ — namely, let UM be
the algebraic numbers and let M have transcendence degree 1.

To prove model-completeness, it is sufficient to assume A ⊂ B with
A,B |= Σ, and prove that every existential sentence true in BA is true in
AA. This is a little easier if you assume (WLOG) that the pair (A,B) is
ℵ1–saturated. Note that there are two cases; UB may or may not equal
UA. Σ does not have quantifier-elimination; for example, the formula
∃x(xy = z ∧ U(x)) is not equivalent to a quantifier-free formula of L.

M3. This is false. In the language with countable many unary predicates
Pn let T be the (complete) theory which says that P0 is everything, and
each Pn+1 is an infinite coinfinite subset of Pn. Let A be the countable
model of T where the intersection of the Pn is empty and B be any model
of T where the intersection of the Pn has size one.
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S1. Suppose that no Si is stationary. For each i, let fi : [κ]<ω → κ be
such that no a ∈ Si satisfies fi([a]

<ω) ⊆ a. Let ϕ map ω\{1} onto ω × ω
such that if ϕ(n) = (ϕ1(n), ϕ2(n)), then ϕ2(n) ≤ n. Define g : [κ]<ω → κ
as follows: g({α}) = α + 1. If |s| = n 6= 1, let t = ts ⊆ s be the first
ϕ2(n) elements of s, and let g(s) = fϕ1(n)(ts). Now, fix a ∈

⋃
i∈ω Si such

that g([a]<ω) ⊆ a, and fix i with a ∈ Si. We show that fi([a]
<ω) ⊆ a, a

contradiction.
Note that a has no largest element (by our definition of g({α}). Now,

fix s ∈ [a]<ω and let j = |s|. Fix n 6= 1 with ϕ(n) = (i, j). Then n ≥ j, so
let s′ ⊇ s be such that s′ ∈ [a]n and s is the first j elements of s′. Then
fi(s) = g(s′) ∈ a.

S2. WLOG V = L (otherwise, work in L). First get ξ with ω1 < ξ < ω2

and L(ξ) ≺ L(ω2). Then, let A be a countable elementary submodel of
L(ω2) with ω1, ξ ∈ A, let L(γ) be its Mostowski collapse, with i : L(γ) →
A the corresponding isomorphism. Then let i(α) = ω1 and i(β) = ξ.

S3. For (a) → (b): Working in M : Say p  τ ⊆ κ̌. Since cf(κ) 6= ω and
P is countable, there is a q ≤ p and an A ⊆ κ such that |A| = κ and
either ∀α ∈ A [q  α̌ ∈ τ ] or ∀α ∈ A [q  α̌ /∈ τ ].

For ¬(a) → ¬(b): In M , let λn ↗ κ. Let c ∈ M [G] with c ⊂ ω and
c Cohen generic over M ; you just need that neither c nor ω\c has an
infinite subset in M . Let S =

⋃
{λn+1\λn : n ∈ c}.
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