Qualifying Exam
Logic
January 2004
Instructions:

If you signed up for Computability Theory, do two E and two C problems.
If you signed up for Model Theory, do two E and two M problems.
If you signed up for Set Theory, do two E and two S problems.

If you think that a problem has been stated incorrectly, mention this
to the proctor and indicate your interpretation in your solution. In such
cases, do not interpret the problem in such a way that it becomes trivial.

E1l. If F C M\, say that F covers X iff for all o, 3 < X there is an f € F
such that either f(a) = B or f() = a. Let k be any infinite cardinal
Prove that k% can be covered by a family of x many functions, but not
by any family of fewer than s functions.

E2. Let £ = {+,0}. Let ¥ be the theory of infinite abelian groups plus
the axiom Vz[z+2 =0 V x4+ 2+ = 0]. Prove that ¥ is decidable (i.e.,
there is an algorithm for deciding whether ¥ F ).

E3. For the following, give either a proof or a counter-example. «, (3
denote ordinals:

a. Va,B>w?la+B8=08+a — a-B=03"q]

b. Vo, > w?la-B=03-a — a+pB=0F+al.



Computability Theory

C1. Suppose we are given x,y € 2 d € w, and a partial computable
Y 25 x d — 2<% such that for every n < w, there exists i < d such that
Y(yln,i) |= x[n. Prove that x <7 y. (Here z[n € 2" is the restriction
of = to the domain n.)

C2. Let A, B C w. Say that A <, B (A is truth-table reducible to B)
if there is a computable function f such that z € A iff D, is an initial
segment of B for some y € Dyy. (Here D, is the finite set S with

canonical index y, i.e., y = > 2™.)
nes
Show that A <, B iff there is a Turing functional ® such that A =

®(B) and ®(X) is total for all oracles X.

C3. Prove that the 1-degrees do not form an upper semilattice as follows:

a. Construct two Turing-incomparable simple sets A and B.

b. Suppose that deg;(A) and deg,(B) have a least upper bound
deg,(D). Show that for some z ¢ D, A, B <; DU {z}. (Hint:
Using simplicity, first find z, 2’ ¢ D such that A <; DU {z} and
B <i Du{Z})

c. Show that D <; A @® B and that therefore D is simple. (Here
Ao B={2x |z € A}U{2x+ 1|z € B}

d. Show that D U {z} <y D for a contradiction.



Model Theory

M1. Prove that the following are equivalent for a cardinal x:
a. k> 280,
b. Whenever F is a family of elementarily equivalent countable struc-
tures for a countable language, there is a model B with [B| = &
such that each 2l € F is elementarily embeddable into ‘B.

M2. Let £ = {+,—,-,0,1}. Let ¥ in £ be the theory of algebraically
closed fields of characteristic 0. Let £ = £ U {U} where U is 1-place.
Let 3 in £ be the theory of pairs of models of ¥, so a model of ¥’ is an
algebraically closed field of characteristic 0 in which U is an algebraically
closed proper subfield. Prove that ' is complete and model-complete.

M3. Assume that £ contains only predicate symbols. Say that a struc-
ture 24 is partitionable iff it is the disjoint union of two substructures each
of which is isomorphic to 2. Prove or disprove: If 2l is partitionable and
20 = B, then B is partitionable.

Here, 2 is the disjoint union of Ay, 2As iff Ay, Ay are submodels of A
and A is the disjoint union of Aq, As.



Set Theory

S1. Let xk be an uncountable regular cardinal. Call S C [k]“ stationary

iff for every f : [k]<¥ — k there exists a € S with f([a]<¥) C a. Assume
that S is stationary and S = | J,., Si. Prove that some S; is stationary.

[k]¢ denotes the family of countably infinite subsets of x, and [k]<¥
denotes the family of finite subsets of k.

S2. ZFC — P denotes the axioms of ZFC with Power Set deleted. Let
Y be ZFC — P plus the axiom that there is an uncountable ordinal. If
M E ¥, then (w;)™ denotes what M thinks is the smallest uncountable
ordinal. Prove that there are o, 5,y with w < o < f < v < wy such that
L(B) %, L(3) X, and @ = (/X9 = (w)) 0.

S3. Let M be a countable transitive model for ZFC, let P = Fn(w,w)
(finite partial functions from w to w), and let G be P—generic over M. Let
k be an infinite cardinal of M. Prove that the following are equivalent:

a. cf(k) # w in M.
b. Whenever S C k in M[G], there is an A
|A| = k in M and either AC Sor ANS =

C Kk in M such that
0.



Answers

El. Let g, : K — a+ 1 be onto for each a < k*. For each £ < k define
fe : kT — kT by fe(a) = ga(§). Let F = {fe : £ <k}. Given o, < k™
suppose that a < 3. Choose & so that gz(§) = a. Then f¢(3) = a

Now suppose |F| < k. By a Lowenheim-Skolem argument find o with
Kk < a < k1 so that for every f € F and for every 0 < a we have that
f(0) < a. Since « has cardinality x and |F| < k there exists § < a with
B # f(«) for each f € F. But then there is no f € F with f(f) = a or

fla) =5

E2. Let E, be the assertion that the group has exponent n — that is
Vz[nx = 0]. Note that the given axiom is equivalent to Ey V Es, since if
x has order 2 and y has order 3, then x + y has order 6.

Then X @ ift XU {Es} Fpand SU{E,} F .

But for prime n, ¥ U {E,} is Xy — categorical, hence complete, and
hence decidable.

To see that it is categorical in any infinite cardinality note that any
model of F, can be viewed as a vector space over the field of size n.
Any two such vector spaces will be isomorphic if they have the same
dimension.

E3. Both are false:
a. a=w?, [B=w2,
a+fB=03+a=w?3, a-B=w2 [ a=udb
b. a =w? B=uw
a-B=8-a=uwl, a+B=uwl B+a=uwltud

C1. For each n let S, = {s € 2" : Ji < d [p(y[n,i) |= s|}. Let k be
the largest integer such that there are infinitely many n with |S,| = k.
Then k£ > 1 (since x[n € S,) and k < d. Note that there is an infinite
sequence n;, computable in y, such that ng < n; < ny < --- and each
|Sy;| = k. Let T be the tree of all sequences s such that for each n; < |s]
we have that s[n; € S,,. The tree T is computable in y and has at
most k infinite paths. Hence each of these infinite paths is isolated and
is therefor computable in T', and hence in y.

C2.

(=) Given the computable function f, define the Turing functional ®

as follows: For any argument x of ®, compute z = 1 + max D,.
Y€ (@)

It is now easy to see that one can define ®7(x) for each o € 27
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(<) Given z, find by compactness of 2 a number z such that 7 (x)
is defined for all o € 2%. It is now easy to find the appropriate set
Dj(a)-

C3.

a. A simple finite-injury priority argument mixing simplicity with
Friedberg-Muchnik strategies.

b. Let A, B <y D via computable 1-1 functions f and g, say. Sup-
pose D Uran(f) = w. Then one can easily find a computable 1-1
function h witnessing D <; A, thus contradicting B £; A. So
fix 2 ¢ DUran(f), thus A <; DU {z} via f also. Similarly find
2" ¢ D such that B < DU {z'} via h/, say. Now slightly modify
h' to obtain B <; DU {z}.

c. Clearly A, B <; A® B, and A® B must be simple, so D <; A® B
must also be simple.

d. Since D contains an infinite computable subset S, argue that
D U {z} <y D by “shifting within S”. If D <; D U {z} via
some computable 1-1 function k, say, then the infinite c.e. set
{2,k(2),k(k(2)),...} is in D, contradicting the simplicity of D.

M1. For (a) — (b): Let X be the theory of the structures in F, let B, be
an N;-saturated model of 3 with [By| = 2™, and let B be an elementary
extension of B of size k.

For (b) — (a): Let 2y = (w;+,-,0,5). Let F be the family of all
countable models which are elementarily equivalent to 2. If each 21 € F
is elementarily embeddable into 9B, then B realizes all types over {S"(0) :
n € w}, so that |B| > 2%,

M2. Completeness follows from model-completeness because there is a
model M = ¥ which embeds into every model of ¥ — namely, let Usy be
the algebraic numbers and let M have transcendence degree 1.

To prove model-completeness, it is sufficient to assume A C B with
A, B | X, and prove that every existential sentence true in 98 4 is true in
4. This is a little easier if you assume (WLOG) that the pair (2, B) is
N;—saturated. Note that there are two cases; Uy may or may not equal
Ugy. 3 does not have quantifier-elimination; for example, the formula
Jz(xy = 2 AU(x)) is not equivalent to a quantifier-free formula of L.

Ma3. This is false. In the language with countable many unary predicates
P, let T be the (complete) theory which says that P, is everything, and
each P, is an infinite coinfinite subset of P,. Let 2 be the countable
model of T" where the intersection of the P, is empty and B be any model

of T" where the intersection of the P, has size one.
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S1. Suppose that no S; is stationary. For each i, let f; : [k]<¥ — K be
such that no a € S; satisfies f;([a]<¥) C a. Let ¢ map w\{1} onto w x w
such that if ¢(n) = (¢1(n), p2(n)), then ps(n) < n. Define g : [k]<Y — K
as follows: g({a}) =a+1. If |s] =n # 1, let t = t; C s be the first
@a2(n) elements of s, and let g(s) = f,,(n)(ts). Now, fix a € (¢, Si such
that g([a]<*) C a, and fix ¢ with a € S;. We show that f;([a]<*) C a, a
contradiction.

Note that a has no largest element (by our definition of g({a}). Now,
fix s € [a]<* and let j = |s|. Fix n # 1 with ¢(n) = (¢,7). Thenn > j, so
let s O s be such that s’ € [a]" and s is the first j elements of s'. Then

fi(s) = g(s) € a.

S2. WLOG V = L (otherwise, work in L). First get £ with w; < § < ws
and L(§) < L(wy). Then, let A be a countable elementary submodel of
L(wy) with wy, & € A, let L(7) be its Mostowski collapse, with ¢ : L(y) —
A the corresponding isomorphism. Then let i(a) = wy and i(5) = &.

S3. For (a) — (b): Working in M: Say p I+ 7 C k. Since cf(k) # w and
P is countable, there is a ¢ < p and an A C k such that |A| = k and
either Va € Ajgl-a e r]orVae Alqlka ¢ 7.

For =(a) — —(b): In M, let A\, /" k. Let ¢ € M[G] with ¢ C w and
¢ Cohen generic over M; you just need that neither ¢ nor w\c has an
infinite subset in M. Let S = [J{A\ns1\\n : 0 € ¢}



