Qualifying Exam Logic August 2004

Instructions:

If you signed up for Model Theory, do two E and two M problems. If you signed up for Set Theory, do two E and two S problems.

If you think that a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

- **E1.** Suppose $\langle A_n : n \in \omega \rangle$ is a sequence of infinite sets. Prove there is a sequence $\langle B_n : n \in \omega \rangle$ such that
 - (1) $B_n \cap B_m = \emptyset$ for each $n \neq m$, and
 - (2) $B_n \subseteq A_n$ and $|B_n| = |A_n|$ for each n.
- **E2.** Let $\mathcal{L} = \{E\}$, where E is binary. One may view \mathcal{L} -structures as directed graphs. Let Σ be a set of axioms which say:
 - (1) The universe is infinite.
 - (2) There are no (directed) paths of length two:

$$\neg \exists x \exists y \exists z [E(x,y) \land E(y,z)] .$$

(3) Every node is on some path of length one:

$$\forall x \exists y [E(x,y) \lor E(y,x)]$$
.

(4) Every node has out-degree 0 or 1:

$$\neg \exists x \exists y \exists z [E(x,y) \land E(x,z) \land y \neq z]$$
.

(5) Every node has in-degree 0 or 2:

$$\forall x \big[\neg \exists y E(y,x) \ \lor$$

$$\exists y \exists z [E(y,x) \land E(z,x) \land y \neq z \land \forall u [E(u,x) \to u = y \lor u = z]]$$
.

Prove that Σ is complete.

E3. Prove that every nonstandard model of true arithmetic has a submodel which is not a model of true arithmetic. Here $\mathcal{L} = \{0, S, +, \cdot, <\}$, and true arithmetic is the set of sentences true in the standard model.

Model Theory

- M1. Let Σ be a theory in a countable \mathcal{L} such that Σ has infinite models. Prove that for any infinite cardinal κ , there is a model $\mathfrak{A} \models \Sigma$ of size κ such that every definable $D \subseteq A$ is either finite or of size κ . Here, D is definable iff D is of the form $\{a \in A : \mathfrak{A} \models \varphi[a, p_1, \ldots, p_m]\}$ for some fixed $p_1, \ldots, p_m \in A$ and some \mathcal{L} -formula $\varphi(x, y_1, \ldots, y_m)$.
- **M2.** Let $\mathcal{L} = \{ \equiv \}$ and let Σ_0 be the theory which says that the model is infinite and \equiv is an equivalence relation.
 - 1. Prove that Σ_0 is ω -stable; that is, whenever $\mathfrak{A} \models \Sigma_0$ and S is a countable subset of \mathfrak{A} , there are only countably many 1-types over S.
 - 2. Prove that Σ_0 has 2^{\aleph_0} complete extensions.
 - 3. Prove that Σ_0 has exactly \aleph_0 extensions which are \aleph_1 -categorical.
- **M3.** Let Σ be a complete theory in a countable \mathcal{L} such that Σ has infinite models. Assume that Σ is not \aleph_0 -categorical.
 - 1. Prove that Σ has at least two (nonisomorphic) countable homogeneous models.
 - 2. Prove that Ehrenfeucht's example has exactly two (nonisomorphic) countable homogeneous models.

Here, a countable $\mathfrak{A} \models \Sigma$ is homogeneous iff whenever $n < \omega$ and \vec{a}, \vec{b} are n-tuples from A which realize the same n-type, there is an automorphism of \mathfrak{A} which moves \vec{a} to \vec{b} . In Ehrenfeucht's example, $\mathcal{L} = \{<\} \cup \{c_i : i < \omega\}$, and Σ is the theory of dense total orders without endpoints (expressed just using <), plus $c_0 < c_1 < c_2 < \cdots$.

Set Theory

- **S1.** Call $f \in \omega^{\omega}$ big iff $f(n) \neq 0$ for all n and $\sum_{n \in \omega} \frac{1}{f(n)} < \infty$. So, $n \mapsto n+1$ isn't big, but $n \mapsto 2^n$ is big. Assume $MA(\kappa)$ and let f_{α} be big for all $\alpha < \kappa$. Prove that there is a big g such that $g \leq^* f_{\alpha}$ for all α . Here, $g \leq^* h$ means that $g(n) \leq h(n)$ for all but finitely many n.
- **S2.** Given an infinite family \mathcal{F} of finite sets of reals so that

$$\sup_{A \in \mathcal{F}} |A| = \infty ,$$

prove that there exists an infinite sequence $\langle I_n : n \in \omega \rangle$ of pairwise disjoint open intervals in the reals so that for each n, there is at least one $A \in \mathcal{F}$ such that both endpoints of I_n are in A.

S3. Let M be a countable transitive model for ZFC. Let \mathbb{P} be Cohen forcing — that is, finite partial functions from ω to 2. Let G be \mathbb{P} -generic over M. Prove that in M[G], there is a sequence of rationals, $\langle q_n : n \in \omega \rangle$ such that each real in $\mathbb{R} \cap M$ is in $\bigcup_{n < \omega} (q_n, q_n + 2^{-n!})$.

E1. Let $\kappa_n = |A_n|$ and $\lambda = \sup_n \kappa_n$. Fix $f : \lambda \to \omega$ such that each $f^{-1}\{n\}$ has size κ_n and is a subset of κ_n . Choose $b_\alpha \in A_{f(\alpha)} \setminus \{b_\xi : \xi < \alpha\}$ for $\alpha < \lambda$. This is possible because if $f(\alpha) = n$ then $\alpha < \kappa_n$. Then let $B_n = \{b_\alpha : f(\alpha) = n\}.$

To obtain such an f let $\{(\beta, n) : n < \omega, \beta < \kappa_n\} = \{(\beta_\alpha, n_\alpha) : \alpha < \lambda\}$ be listed in max-lex order, this is the same as lexicographical order on this set except that $\omega \times \omega$ is an initial segment of order type ω . Put $f(\alpha) = n_{\alpha}$.

Alternative solution: Suppose that $|\cup_n A_n| = \lambda$. Construct sequences $(B_n^{\alpha}: n < \omega)$ by induction on $\alpha < \lambda$ such that

- \bullet $|B_n^0| = \omega$
- $B_n^{\alpha} \subseteq A_n$ $B_n^{\alpha} \subseteq B_n^{\beta}$ whenever $\alpha \le \beta$
- B_n^{α} and B_m^{α} are disjoint unless n=m, $B_n^{\delta} = \bigcup_{\alpha < \delta} B_n^{\alpha}$ at limit ordinals δ $B_n^{\alpha+1} = B_n^{\alpha}$ if $|A_n| \le |\alpha| + \omega$ and $|B_n^{\alpha+1} \setminus B_n^{\alpha}| = 1$ if $|A_n| > |\alpha| + \omega$

The first item is achieved as follows. Choose $b_n \in A_i \setminus \{b_m : m < n\}$ where $n = 2^{i}(2j + 1)$ inductively on n. Then put

$$B_i^0 = \{b_n : \exists j \ n = 2^i(2j+1)\}.$$

The last item is possible to achieve since for these n we have that

$$|A_n| > |\alpha| + \omega = |\cup_m B_m^{\alpha}|$$

so we may inductively pick one new element for each such n. Finally set $B_n = \bigcup_{\alpha < \kappa} B_n^{\alpha}$.

E2. By (1), it is enough to show that Σ is \aleph_0 -categorical. Let $\mathfrak{A} \models \Sigma$. By (2)(3), we can partition A into P, Q, where $P = \{x : \exists y E(x, y)\}$ and $Q = \{x : \exists y E(y, x)\}$. By (3), $E_{\mathfrak{A}}$ contains no pairs in $P \times P \cup Q \times Q$, so $E_{\mathfrak{A}} \subseteq P \times Q$. By (4), $E_{\mathfrak{A}}$ is a function, and then (5) says that each element of Q has exactly 2 preimages. Hence, Σ is κ -categorical for all infinite κ .

E3. Let \mathfrak{A} be a nonstandard model, and let H be any nonstandard element of \mathfrak{A} and let $B = \{a \in A : a \text{ is standard or } H < a\}$.

Alternate solution which gives an initial segment: Let $P \in A$ be an infinitely large prime, and let $B = \{a \in A : \exists k \in \omega \ [a < P^k]\}$. Then the statement $\forall x \exists y > x \forall z [z < x \rightarrow z \mid y]$, which is true in the standard model, is false in \mathfrak{B} (consider x=2P).

M1. Let $\mathfrak{B} \models \Sigma$ with $|\mathfrak{B}| = \kappa$. Construct an elementary chain $\mathfrak{B} = \mathfrak{B}_0 \prec \mathfrak{B}_1 \prec \cdots \prec \mathfrak{B}_{\kappa}$, as in the construction of a saturated model. $\mathfrak{A} = \mathfrak{B}_{\kappa}$. All the \mathfrak{B}_{α} will have size κ . Take unions at limit ordinals. By the usual bookkeeping, make sure that all infinite definable sets get expanded κ times.

M2.

- 1. It is enough to show that every $\mathfrak{A} \models \Sigma_0$ only realizes countably many 1-types over a countable S. Given $\mathfrak{A} \models \Sigma_0$, define $a \sim b$ iff there is an automorphism of \mathfrak{A} taking a to b which fixes all elements of S. By taking elementary extensions, it is sufficient to consider only \mathfrak{A} in which all infinite \equiv -classes have the same size. For these \mathfrak{A} and countable $S \subset \mathfrak{A}$, there are only countably many \sim -classes in A.
- **2.** For each $f: \omega \to \omega$, there is an extension which says that there are exactly f(n) equivalence classes of size n.
- **3.** For each n, the theory with exactly one class of sizes $1, 2, \ldots, n$ plus one infinite class is \aleph_1 -categorical. This yields infinitely many \aleph_1 -categorical extensions. To prove that there are only countably many, say $\Sigma \supseteq \Sigma_0$ is \aleph_1 -categorical. Then every $\mathfrak{A} \models \Sigma$ can have at most 1 infinite equivalence class; otherwise there would be $\mathfrak{A}, \mathfrak{B} \models \Sigma$ with $\mathfrak{A} \prec \mathfrak{B}$ and $|\mathfrak{A}| = |\mathfrak{B}| = \aleph_1$, where all infinite classes have size \aleph_1 in \mathfrak{B} but some infinite class has size \aleph_0 in \mathfrak{A} . Then, by compactness, there is a fixed n so that models of Σ have no equivalence classes of any finite size larger than n. There's only countably many possibilities for such Σ .
- M3. If for some n, Σ has uncountably many n-types, then there are 2^{\aleph_0} countable homogeneous models, since each type is realized in some countable homogeneous model. If for all n, there are only countably many n-types, then there is a saturated model and an atomic model; these are both homogeneous, and they are not isomorphic because Σ is not \aleph_0 -categorical. In Ehrenfeucht's example, the model in which $a = \sup_n c_n$ exists is not homogeneous, since a has the same type as all larger elements, but all automorphisms fix a.

S1. Let

$$\mathbb{P} = \{ (n, g) : n < \omega \& g \in (\omega \setminus \{0\})^{\omega} \& \sum_{i} \frac{1}{g(i)} < 1 \} .$$

and define $(n,g) \leq (m,h)$ iff $n \geq m$, $g \upharpoonright m = h \upharpoonright m$, and $g(i) \leq h(i)$ for all i. It is easy to see that the generic $r \in \omega^{\omega}$ satisfies $\sum 1/r(i) \leq 1$, so r is big. Given a big f define

$$D_f = \{(n, g) \in \mathbb{P} : n < \omega \& \forall i \ge n \ g(i) \le f(i)\} .$$

To prove D_f is dense in \mathbb{P} : Since given any $(m,h) \in \mathbb{P}$ choose $\varepsilon > 0$ such that $\sum_i 1/h(i) < 1 - \varepsilon$ and then choose n sufficiently large so that $\sum_{i>n} 1/f(i) < \varepsilon/2$ and let g be defined by $g \upharpoonright n = h \upharpoonright n$ and $g(i) = \min(f(i),h(i))$ for $i \geq n$. Then $(n,g) \in D_f$.

Finally, to prove that \mathbb{P} has the ccc: Suppose that $(n_{\alpha}, g_{\alpha}) \in \mathbb{P}$ for $\alpha < \omega_1$. Choose $\varepsilon > 0$ so that uncountably many of these, say $\alpha \in \Gamma$ have $\sum_i 1/g_{\alpha}(i) < 1 - \varepsilon$. Then for each of these choose m_{α} so that $\sum_{i>m_{\alpha}} 1/g_{\alpha}(i) < \varepsilon/2$ and then choose uncountable $\Delta \subseteq \Gamma$ so that all α in Δ have the same $m_{\alpha} = m$ and $g_{\alpha} \upharpoonright m$. Then any two of these are compatible by just taking (n,h) where $h(i) = \min(g_{\alpha}(i), g_{\beta}(i))$.

- **S2.** Inductively choose $(I_i : i < n), U_n$ so that
 - (1) $I_0, I_1, \ldots, I_{n-1}, U_n$ are pairwise disjoint open intervals with U_n possibly unbounded,
 - (2) for each i < n there exists $A \in F$ with the endpoints of I_i in A, and
 - (3) $\sup_{A \in \mathcal{F}} |A \cap U_n| = \infty$.

To start we take $U_0 = (-\infty, \infty)$. To do the construction, choose $A \in F$ such that $A \cap U_n$ contains at least three elements a < b < c. Take $U_{n+1} = (b, \infty) \cap U_n$ or $U_{n+1} = (-\infty, b) \cap U_n$ whichever satisfies condition (3) and in the first case let $I_n = (a, b)$ and in the second case let $I_n = (b, c)$.

S3. In
$$M[G]$$
, let $F = \bigcup G$, so $F : \omega \to 2$. Let

$$q_n = \frac{|\{j < n : F(j) = 1\}|}{|\{j < n : F(j) = 0\}|}.$$

Then if $x \in \mathbb{R} \cap M$, each $p \in \mathbb{P}$ has an extension forcing $q_n < x < q_n + 2^{-n!}$ for some n. Remark. Many other methods of using an $F \in 2^{\omega}$ to code an ω -sequence of rationals will also work here.