
Qualifying Exam
Logic

January 2005

Instructions:

If you signed up for Computability Theory, do two E and two C problems.
If you signed up for Model Theory, do two E and two M problems.
If you signed up for Set Theory, do two E and two S problems.

If you think that a problem has been stated incorrectly, mention this
to the proctor and indicate your interpretation in your solution. In such
cases, do not interpret the problem in such a way that it becomes trivial.

E1. Let Σ be the theory of directed acyclic graphs. Prove that Σ is not
finitely axiomatizable. Here, L = {E}, where E is binary, and Σ = {ϕn :
1 ≤ n < ω}, where ϕ1 is ¬∃x [xEx], ϕ2 is ¬∃x∃y [xEy ∧ yEx], and ϕn is

¬∃x1 · · · ∃xn [x1Ex2 ∧ x2Ex3 ∧ · · · ∧ xn−1Exn ∧ xnEx1]

“Not finitely axiomatizable” means that there is no finite Π in the same
L such that Π and Σ have the same models.

E2. Prove that the Continuum Hypothesis is equivalent to the statement
that there is a subset A ⊆ R of size ℵ1 such that both A and R\A meet
every perfect subset of R. A set is perfect iff it is closed and infinite and
has no isolated points.

E3. Let TOWOE be the theory of total orders without endpoints; here
L = {<}, and TOWOE includes, besides the axioms for total order,
the sentences ∀x∃y[x < y] and ∀x∃y[y < x]. Prove that TOWOE does
not admit quantifier elimination; that is, there is a formula ϕ(x1, . . . xn)
which is not provably equivalent (from TOWOE) to any quantifier-free
formula.
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Computability Theory

C1. Prove that there are m,n ∈ ω such that m 6= n and Wm ∩Wn =
{m,n}.

C2. Prove there exists an infinite computable subtree T ⊆ ω<ω such that
T does not contain an infinite computable chain or an infinite computable
antichain.
T is a subtree of ω<ω means that σ ⊆ τ ∈ T implies σ ∈ T for every

σ, τ ∈ ω<ω.
C ⊆ T is a chain iff σ ⊆ τ or τ ⊆ σ for every σ, τ ∈ C.
A ⊆ T is an antichain iff σ ⊆ τ for σ, τ ∈ T just in case σ = τ .

C3. Let QS = {e | |We| ∈ S}. Prove that for every finite nonempty set
S of positive integers there exists an n such that QS is n-c.e.-complete.
Hint. If |S| = 1 then QS is 2-c.e.-complete.

We ⊆ ω is the eth c.e. set, in some standard enumeration.

A is 2-c.e. iff there exists c.e. sets B ⊇ C such that A = B\C.

A is n-c.e. iff there exists c.e. sets Ai for i < n such that
A0 ⊇ A1 ⊇ · · · and for all x:

x ∈ A iff x ∈ A0 and the largest i such that x ∈ Ai is even.

A is Γ-complete iff Γ = {B : B ≤m A}.

2



Model Theory

M1. Let L = {<} and let A be countable and well-ordered in type ω2.
Prove that A has a countable saturated elementary extension.

M2. In the complex numbers C, define
√
z by

√
reiθ =

√
r · eiθ/2 when

−π < θ ≤ π. Let Σ be the theory of the resulting structure, using
L = {+, ·, 0, 1,

√
}. Prove that Σ is not ℵ1–categorical.

M3. Let L = {+, ·, <}. Define A so that A = ω and +, ·, < have
their standard meaning. Let U be a nonprincipal ultrafilter on ω. Then
A ≺ Aω/U and the universe of Aω/U is Aω/U = {[f ] : f ∈ ωω}. Let B
be the submodel of Aω/U consisting of all [f ] such that f is first-order
definable in A. Prove that A ≺ B ≺ Aω/U .
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Set Theory

S1. Assume MA(ℵ1). Fix A,B ⊂ R with |A| = |B| = ℵ1 and A∩B = ∅.
Let S and T be countable dense subsets of R. Prove that there is a
continuous f : R→ R such that f(A) ⊆ S and f(B) ⊆ T .

S2. Let M be a countable transitive model for ZFC . Let P be Cohen
forcing — that is, finite partial functions from ω to 2. Let (X;<) ∈ M
be a dense total order. Let G be P-generic over M . Prove that in M [G],
(X;<) cannot be Dedekind-complete.

A total order is Dedekind-complete iff every subset has a greatest lower
bound and a least upper bound. Applying this with the empty subset,
X must have a smallest and a largest element.

S3. Define the sequence 〈Cα : α ∈ S〉 to be club guessing iff:

1. S ⊆ ω1 is a stationary set of limit ordinals.
2. Cα ⊆ α is unbounded in α for each α ∈ S.
3. For every club E ⊆ ω1 there exists α ∈ S such that Cα ⊆ E.

Define 〈Cα : α ∈ S〉 to be almost club guessing iff 1,2, and

3′. For every club E ⊆ ω1 there exists α ∈ S and there exists β < α
such that (Cα \ β) ⊆ E.

Prove that if 〈Cα : α ∈ S〉 is almost club guessing, then there exists
β < ω1 such that 〈Cα \ β : α ∈ S \ β〉 is club guessing.

4



Answers

E1. Suppose that Π is finite and Π and Σ have the same models. Since
Π is finite, there is a finite n such that ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn `

∧
Π. Now,

let A consist of one cycle of length n + 1. Then A |= ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn

so A |= Π, but A 6|= Σ, a contradiction.

E2. For →, let A be any Bernstein set. For ←, note that there are 2ℵ0

disjoint perfect sets. If they all meet A, then |A| = 2ℵ0 .

E3. Let ϕ(x1, x2) be ∃y [x1 < y < x2], and suppose that ψ(x1, x2) is
quantifier-free. Let A = (−∞, 0] ∪ [1,∞) ⊂ R. Then A |= ¬ϕ[0, 1]
and R |= ϕ[0, 1], while A |= ψ[0, 1] iff R |= ψ[0, 1]. It follows that
TOWOE 6` ∀x1, x2 [ϕ(x1, x2)↔ ψ(x1, x2)].

C1. First, fix m such that ϕm is total, so that Wm = ω. Now, let
f(x, y) = 0 whenever y ∈ {x,m}, and let f(x, y) be undefined otherwise.
By the Recursion Theorem, fix n such that ϕn(y) = f(n, y) for all y.
Then Wm ∩Wn = Wn = {m,n}, and m 6= n because ϕm 6= ϕn.

C2. Build the computable tree T level by level, cutting off high enough
to diagonalize against computable chains and antichains without making
the tree finite.

C3. If S has k many gaps then QS is 2(k + 1)-c.e.-complete. When
S = {r}, the proof is: Upper bound: by inspection. Lower bound: Given
a 2-c.e. set C, enumerate r many numbers into a c.e. set Wf(n) when
n enters C, and enumerate more numbers into Wf(n) when n leaves C.
For the general case, we get QS to be 2n-c.e.-m-complete where n is the
number of maximal intervals [x, y] contained in S.

M1. By taking elementary extensions ω times, we get a B � A of order
type (ω + Z ·Q) · (ω + Z ·Q); here Z ·Q means Q blocks of Z. Now, let
τ(x) be a type over a finite subset of B. Taking elementary extensions
ω more times, we get τ realized by some c in some C � B of the same
order type. But then we can automorph c back into B, so τ is realized
in B. Thus, B is saturated.

One might also do this first in the case where A has order type ω, where
it’s a bit simpler. Then, use the fact that in (ω;<), you can define the
order type ω2 (as an ordering of pairs). This also shows that the result
holds whenever the order type of A is any infinite ordinal α < ωω.

The result is false for α ≥ ωω. To see this, note that given positive
integers n1 > n2 > · · · > nk, there is a formula θ(x) such that (α;<) |=
θ(ξ) iff ξ = η + ωn1 + ωn2 + · · · + ωnk for some η < ξ. Thus, the theory
of (α;<) has 2ℵ0 1-types, so it has no countable saturated model.
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M2. Σ is not even ω–stable, since C realizes 2ℵ0 types over ∅. To see
this, define S = {z :

√
z2 = z}. Note that eiθ ∈ S when −π/2 < θ < π/2

and eiθ /∈ S when π/2 < θ < 3π/2. For any f ∈ {0, 1}ω, let θf =

π
∑

n f(n)4−n and let zf = eiθf . Then (zf )4k ∈ S iff f(k) = 0.
Actually, Σ is not κ–stable for any κ, since the formula “y − x ∈ S”

defines a total order when restricted to R.

M3. It is sufficient to prove that B ≺ Aω/U ; then A ≺ B will follow us-
ing A ≺ Aω/U . Applying the Tarski–Vaught test, it is sufficient to prove
that whenever Aω/U |= ∃xϕ([f1], . . . , [fn], x) with f1, . . . , fn definable in
A, there is a definable g such that Aω/U |= ϕ([f1], . . . , [fn], [g]). Now by
 Loś’s Theorem, A |= ∃xϕ(f1(i), . . . , fn(i), x) for almost every i ∈ ω, so
define g(i) to be the least k ∈ ω such that A |= ϕ(f1(i), . . . , fn(i), k).

S1. Let P be the set of all finite partial functions from R to R such that

1. p(A ∩ dom(p)) ⊆ S
2. p(B ∩ dom(p)) ⊆ T
3. |p(x)− p(y)| < |x− y| whenever {x, y} ∈ [dom(p)]2.

Use a ∆–system argument to prove that P has the ccc. Then, meet ℵ1

dense sets to get a filter G with g =
⋃
G such that A∪B ⊆ dom(g) and

dom(g) is dense in R. Then, using (3), g extends uniquely to a continuous
function on R.

S2. In M , let ϕ : Q→ X be 1-1 and order-preserving. In M [G], we have
g =

⋃
G : ω → 2, and let r =

∑
n g(n)2−n. Then r is irrational, and

there is no x ∈ X such that ϕ(Q ∩ (−∞, r)) < x < ϕ(Q ∩ (r,+∞)).

S3. For any β < ω1, set Cβ = 〈Cα \ β : α ∈ S \ β〉. Then clearly (1)
still holds for Cβ, and (2) also holds whenever β is a successor ordinal
(otherwise, maybe β ∈ S, and then β ∈ S \ β but Cβ \ β = ∅).

If the result fails, then for each δ < ω1, Cδ+1 is not club guessing, so
we can choose a club Eδ so that there is no α in S with α > δ and
(Cα \ (δ + 1)) ⊆ Eδ. Then the diagonal intersection, D, is also a club:

D =
{
γ < ω1 : γ ∈

⋂
{Eδ : δ < γ}

}
.

Applying (3′), fix α ∈ S and δ < α such that (Cα \ δ) ⊆ D. Then

(Cα \ (δ + 1)) ⊆ (D \ (δ + 1)) ⊆ Eδ ,

a contradiction.
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