Qualifying Exam Logic January 2005

Instructions:

If you signed up for Computability Theory, do two E and two C problems. If you signed up for Model Theory, do two E and two M problems. If you signed up for Set Theory, do two E and two S problems.

If you think that a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

E1. Let Σ be the theory of directed acyclic graphs. Prove that Σ is not finitely axiomatizable. Here, $\mathcal{L} = \{E\}$, where E is binary, and $\Sigma = \{\varphi_n : 1 \leq n < \omega\}$, where φ_1 is $\neg \exists x [xEx], \varphi_2$ is $\neg \exists x \exists y [xEy \land yEx]$, and φ_n is

 $\neg \exists x_1 \cdots \exists x_n \left[x_1 E x_2 \land x_2 E x_3 \land \cdots \land x_{n-1} E x_n \land x_n E x_1 \right]$

"Not finitely axiomatizable" means that there is no finite Π in the same \mathcal{L} such that Π and Σ have the same models.

E2. Prove that the Continuum Hypothesis is equivalent to the statement that there is a subset $A \subseteq \mathbb{R}$ of size \aleph_1 such that both A and $\mathbb{R} \setminus A$ meet every perfect subset of \mathbb{R} . A set is perfect iff it is closed and infinite and has no isolated points.

E3. Let TOWOE be the theory of total orders without endpoints; here $\mathcal{L} = \{<\}$, and TOWOE includes, besides the axioms for total order, the sentences $\forall x \exists y [x < y]$ and $\forall x \exists y [y < x]$. Prove that TOWOE does not admit quantifier elimination; that is, there is a formula $\varphi(x_1, \ldots x_n)$ which is not provably equivalent (from TOWOE) to any quantifier-free formula.

Computability Theory

C1. Prove that there are $m, n \in \omega$ such that $m \neq n$ and $W_m \cap W_n = \{m, n\}$.

C2. Prove there exists an infinite computable subtree $T \subseteq \omega^{<\omega}$ such that T does not contain an infinite computable chain or an infinite computable antichain.

T is a subtree of $\omega^{<\omega}$ means that $\sigma \subseteq \tau \in T$ implies $\sigma \in T$ for every $\sigma, \tau \in \omega^{<\omega}$.

 $C \subseteq T$ is a chain iff $\sigma \subseteq \tau$ or $\tau \subseteq \sigma$ for every $\sigma, \tau \in C$.

 $A \subseteq T$ is an antichain iff $\sigma \subseteq \tau$ for $\sigma, \tau \in T$ just in case $\sigma = \tau$.

C3. Let $Q_S = \{e \mid |W_e| \in S\}$. Prove that for every finite nonempty set S of positive integers there exists an n such that Q_S is n-c.e.-complete. *Hint.* If |S| = 1 then Q_S is 2-c.e.-complete.

 $W_e \subseteq \omega$ is the e^{th} c.e. set, in some standard enumeration.

A is 2-c.e. iff there exists c.e. sets $B \supseteq C$ such that $A = B \setminus C$.

A is n-c.e. iff there exists c.e. sets A_i for i < n such that $A_0 \supseteq A_1 \supseteq \cdots$ and for all x:

 $x \in A$ iff $x \in A_0$ and the largest *i* such that $x \in A_i$ is even.

A is Γ -complete iff $\Gamma = \{B : B \leq_m A\}.$

Model Theory

M1. Let $\mathcal{L} = \{<\}$ and let \mathfrak{A} be countable and well-ordered in type ω^2 . Prove that \mathfrak{A} has a countable saturated elementary extension.

M2. In the complex numbers \mathbb{C} , define \sqrt{z} by $\sqrt{re^{i\theta}} = \sqrt{r} \cdot e^{i\theta/2}$ when $-\pi < \theta \leq \pi$. Let Σ be the theory of the resulting structure, using $\mathcal{L} = \{+, \cdot, 0, 1, \sqrt{-}\}$. Prove that Σ is not \aleph_1 -categorical.

M3. Let $\mathcal{L} = \{+, \cdot, <\}$. Define \mathfrak{A} so that $A = \omega$ and $+, \cdot, <$ have their standard meaning. Let \mathcal{U} be a nonprincipal ultrafilter on ω . Then $\mathfrak{A} \prec \mathfrak{A}^{\omega}/\mathcal{U}$ and the universe of $\mathfrak{A}^{\omega}/\mathcal{U}$ is $A^{\omega}/\mathcal{U} = \{[f] : f \in \omega^{\omega}\}$. Let \mathfrak{B} be the submodel of $\mathfrak{A}^{\omega}/\mathcal{U}$ consisting of all [f] such that f is first-order definable in \mathfrak{A} . Prove that $\mathfrak{A} \prec \mathfrak{B} \prec \mathfrak{A}^{\omega}/\mathcal{U}$.

Set Theory

S1. Assume $MA(\aleph_1)$. Fix $A, B \subset \mathbb{R}$ with $|A| = |B| = \aleph_1$ and $A \cap B = \emptyset$. Let S and T be countable dense subsets of \mathbb{R} . Prove that there is a continuous $f : \mathbb{R} \to \mathbb{R}$ such that $f(A) \subseteq S$ and $f(B) \subseteq T$.

S2. Let M be a countable transitive model for ZFC. Let \mathbb{P} be Cohen forcing — that is, finite partial functions from ω to 2. Let $(X; <) \in M$ be a dense total order. Let G be \mathbb{P} -generic over M. Prove that in M[G], (X; <) cannot be Dedekind-complete.

A total order is *Dedekind-complete* iff every subset has a greatest lower bound and a least upper bound. Applying this with the empty subset, X must have a smallest and a largest element.

S3. Define the sequence $\langle C_{\alpha} : \alpha \in S \rangle$ to be *club guessing* iff:

- 1. $S \subseteq \omega_1$ is a stationary set of limit ordinals.
- 2. $C_{\alpha} \subseteq \alpha$ is unbounded in α for each $\alpha \in S$.

3. For every club $E \subseteq \omega_1$ there exists $\alpha \in S$ such that $C_{\alpha} \subseteq E$.

Define $\langle C_{\alpha} : \alpha \in S \rangle$ to be almost club guessing iff 1,2, and

3'. For every club $E \subseteq \omega_1$ there exists $\alpha \in S$ and there exists $\beta < \alpha$ such that $(C_{\alpha} \setminus \beta) \subseteq E$.

Prove that if $\langle C_{\alpha} : \alpha \in S \rangle$ is almost club guessing, then there exists $\beta < \omega_1$ such that $\langle C_{\alpha} \setminus \beta : \alpha \in S \setminus \beta \rangle$ is club guessing.

Answers

E1. Suppose that Π is finite and Π and Σ have the same models. Since Π is finite, there is a finite n such that $\varphi_1 \wedge \varphi_2 \wedge \cdots \wedge \varphi_n \vdash \bigwedge \Pi$. Now, let \mathfrak{A} consist of one cycle of length n + 1. Then $\mathfrak{A} \models \varphi_1 \wedge \varphi_2 \wedge \cdots \wedge \varphi_n$ so $\mathfrak{A} \models \Pi$, but $\mathfrak{A} \not\models \Sigma$, a contradiction.

E2. For \rightarrow , let A be any Bernstein set. For \leftarrow , note that there are 2^{\aleph_0} disjoint perfect sets. If they all meet A, then $|A| = 2^{\aleph_0}$.

E3. Let $\varphi(x_1, x_2)$ be $\exists y [x_1 < y < x_2]$, and suppose that $\psi(x_1, x_2)$ is quantifier-free. Let $A = (-\infty, 0] \cup [1, \infty) \subset \mathbb{R}$. Then $A \models \neg \varphi[0, 1]$ and $\mathbb{R} \models \varphi[0, 1]$, while $A \models \psi[0, 1]$ iff $\mathbb{R} \models \psi[0, 1]$. It follows that TOWOE $\not \forall \forall x_1, x_2 [\varphi(x_1, x_2) \leftrightarrow \psi(x_1, x_2)]$.

C1. First, fix m such that φ_m is total, so that $W_m = \omega$. Now, let f(x, y) = 0 whenever $y \in \{x, m\}$, and let f(x, y) be undefined otherwise. By the Recursion Theorem, fix n such that $\varphi_n(y) = f(n, y)$ for all y. Then $W_m \cap W_n = W_n = \{m, n\}$, and $m \neq n$ because $\varphi_m \neq \varphi_n$.

C2. Build the computable tree T level by level, cutting off high enough to diagonalize against computable chains and antichains without making the tree finite.

C3. If S has k many gaps then Q_S is 2(k + 1)-c.e.-complete. When $S = \{r\}$, the proof is: Upper bound: by inspection. Lower bound: Given a 2-c.e. set C, enumerate r many numbers into a c.e. set $W_{f(n)}$ when n enters C, and enumerate more numbers into $W_{f(n)}$ when n leaves C. For the general case, we get Q_S to be 2n-c.e.-m-complete where n is the number of maximal intervals [x, y] contained in S.

M1. By taking elementary extensions ω times, we get a $\mathfrak{B} \succ \mathfrak{A}$ of order type $(\omega + \mathbb{Z} \cdot \mathbb{Q}) \cdot (\omega + \mathbb{Z} \cdot \mathbb{Q})$; here $\mathbb{Z} \cdot \mathbb{Q}$ means \mathbb{Q} blocks of \mathbb{Z} . Now, let $\tau(x)$ be a type over a finite subset of B. Taking elementary extensions ω more times, we get τ realized by some c in some $\mathfrak{C} \succ \mathfrak{B}$ of the same order type. But then we can automorph c back into B, so τ is realized in \mathfrak{B} . Thus, \mathfrak{B} is saturated.

One might also do this first in the case where \mathfrak{A} has order type ω , where it's a bit simpler. Then, use the fact that in $(\omega; <)$, you can define the order type ω^2 (as an ordering of pairs). This also shows that the result holds whenever the order type of \mathfrak{A} is any infinite ordinal $\alpha < \omega^{\omega}$.

The result is false for $\alpha \geq \omega^{\omega}$. To see this, note that given positive integers $n_1 > n_2 > \cdots > n_k$, there is a formula $\theta(x)$ such that $(\alpha; <) \models \theta(\xi)$ iff $\xi = \eta + \omega^{n_1} + \omega^{n_2} + \cdots + \omega^{n_k}$ for some $\eta < \xi$. Thus, the theory of $(\alpha; <)$ has 2^{\aleph_0} 1-types, so it has no countable saturated model. **M2.** Σ is not even ω -stable, since \mathbb{C} realizes 2^{\aleph_0} types over \emptyset . To see this, define $S = \{z : \sqrt{z^2} = z\}$. Note that $e^{i\theta} \in S$ when $-\pi/2 < \theta < \pi/2$ and $e^{i\theta} \notin S$ when $\pi/2 < \theta < 3\pi/2$. For any $f \in \{0,1\}^{\omega}$, let $\theta_f = \pi \sum_n f(n) 4^{-n}$ and let $z_f = e^{i\theta_f}$. Then $(z_f)^{4^k} \in S$ iff f(k) = 0.

Actually, Σ is not κ -stable for any κ , since the formula " $y - x \in S$ " defines a total order when restricted to \mathbb{R} .

M3. It is sufficient to prove that $\mathfrak{B} \prec \mathfrak{A}^{\omega}/\mathcal{U}$; then $\mathfrak{A} \prec \mathfrak{B}$ will follow using $\mathfrak{A} \prec \mathfrak{A}^{\omega}/\mathcal{U}$. Applying the Tarski–Vaught test, it is sufficient to prove that whenever $\mathfrak{A}^{\omega}/\mathcal{U} \models \exists x \varphi([f_1], \ldots, [f_n], x)$ with f_1, \ldots, f_n definable in \mathfrak{A} , there is a definable g such that $\mathfrak{A}^{\omega}/\mathcal{U} \models \varphi([f_1], \ldots, [f_n], [g])$. Now by Loś's Theorem, $\mathfrak{A} \models \exists x \varphi(f_1(i), \ldots, f_n(i), x)$ for almost every $i \in \omega$, so define g(i) to be the least $k \in \omega$ such that $\mathfrak{A} \models \varphi(f_1(i), \ldots, f_n(i), k)$.

S1. Let $\mathbb P$ be the set of all finite partial functions from $\mathbb R$ to $\mathbb R$ such that

- 1. $p(A \cap \operatorname{dom}(p)) \subseteq S$
- 2. $p(B \cap \operatorname{dom}(p)) \subseteq T$
- 3. |p(x) p(y)| < |x y| whenever $\{x, y\} \in [\text{dom}(p)]^2$.

Use a Δ -system argument to prove that \mathbb{P} has the ccc. Then, meet \aleph_1 dense sets to get a filter G with $g = \bigcup G$ such that $A \cup B \subseteq \operatorname{dom}(g)$ and $\operatorname{dom}(g)$ is dense in \mathbb{R} . Then, using (3), g extends uniquely to a continuous function on \mathbb{R} .

S2. In M, let $\varphi : \mathbb{Q} \to X$ be 1-1 and order-preserving. In M[G], we have $g = \bigcup G : \omega \to 2$, and let $r = \sum_n g(n)2^{-n}$. Then r is irrational, and there is no $x \in X$ such that $\varphi(\mathbb{Q} \cap (-\infty, r)) < x < \varphi(\mathbb{Q} \cap (r, +\infty))$.

S3. For any $\beta < \omega_1$, set $\mathcal{C}_{\beta} = \langle C_{\alpha} \setminus \beta : \alpha \in S \setminus \beta \rangle$. Then clearly (1) still holds for \mathcal{C}_{β} , and (2) also holds whenever β is a successor ordinal (otherwise, maybe $\beta \in S$, and then $\beta \in S \setminus \beta$ but $\mathcal{C}_{\beta} \setminus \beta = \emptyset$).

If the result fails, then for each $\delta < \omega_1$, $\mathcal{C}_{\delta+1}$ is not club guessing, so we can choose a club E_{δ} so that there is no α in S with $\alpha > \delta$ and $(C_{\alpha} \setminus (\delta + 1)) \subseteq E_{\delta}$. Then the diagonal intersection, D, is also a club:

$$D = \left\{ \gamma < \omega_1 : \gamma \in \bigcap \{ E_\delta : \delta < \gamma \} \right\}$$

Applying (3'), fix $\alpha \in S$ and $\delta < \alpha$ such that $(C_{\alpha} \setminus \delta) \subseteq D$. Then

$$(C_{\alpha} \setminus (\delta + 1)) \subseteq (D \setminus (\delta + 1)) \subseteq E_{\delta}$$
,

a contradiction.