Qualifying Exam
Logic
January 2005
Instructions:

If you signed up for Computability Theory, do two E and two C problems.
If you signed up for Model Theory, do two E and two M problems.
If you signed up for Set Theory, do two E and two S problems.

If you think that a problem has been stated incorrectly, mention this
to the proctor and indicate your interpretation in your solution. In such
cases, do not interpret the problem in such a way that it becomes trivial.

E1. Let X be the theory of directed acyclic graphs. Prove that X is not
finitely axiomatizable. Here, £ = {E}, where E is binary, and ¥ = {¢,, :
1 <n <w}, where ¢y is 3z [zEz], @9 is 3Ty [rEy A yEx|, and ¢, is

—3Jxy -+ 3x, [t Bxg AxgExs A+ AN xy 1 Ex, A x, Ery

“Not finitely axiomatizable” means that there is no finite II in the same
L such that IT and > have the same models.

E2. Prove that the Continuum Hypothesis is equivalent to the statement
that there is a subset A C R of size 8y such that both A and R\ A meet
every perfect subset of R. A set is perfect iff it is closed and infinite and
has no isolated points.

E3. Let TOWOE be the theory of total orders without endpoints; here
L = {<}, and TOWOE includes, besides the axioms for total order,
the sentences Vx3dy[r < y| and VzIy[y < z]. Prove that TOWOE does
not admit quantifier elimination; that is, there is a formula p(z1,...z,)
which is not provably equivalent (from TOWOE) to any quantifier-free
formula.



Computability Theory

C1. Prove that there are m,n € w such that m # n and W,, " W,, =

{m,n}.

C2. Prove there exists an infinite computable subtree T' C w<* such that
T does not contain an infinite computable chain or an infinite computable
antichain.

T is a subtree of w
o, T €W,

C CTisachainiff c C 7 or 7 C o for every o,7 € C.

A C T is an antichain iff 0 C 7 for 0,7 € T just in case 0 = 7.

<“ means that ¢ C 7 € T implies 0 € T for every

C3. Let Qs = {e | [W,] € S}. Prove that for every finite nonempty set
S of positive integers there exists an n such that Qg is n-c.e.-complete.
Hint. If |S| = 1 then Qg is 2-c.e.-complete.

W, C w is the e c.e. set, in some standard enumeration.
A is 2-c.e. iff there exists c.e. sets B O C' such that A = B\C.

A is n-c.e. iff there exists c.e. sets A; for i < n such that
Ay D A; O --- and for all z:
r € Aiff z € Ay and the largest ¢ such that z € A; is even.

Ais I'-complete if I' = {B : B <,, A}



Model Theory

M1. Let £ = {<} and let 2 be countable and well-ordered in type w?.
Prove that 2 has a countable saturated elementary extension.

M2. In the complex numbers C, define \/z by Vre®® = \/r - ¢?/? when
—m < 6 < 7. Let X be the theory of the resulting structure, using
L={+,-,0,1,4/ }. Prove that ¥ is not R;—categorical.

M3. Let £ = {+,:,<}. Define 2 so that A = w and +,-, < have
their standard meaning. Let &/ be a nonprincipal ultrafilter on w. Then
2 < A¥/U and the universe of A¥ /U is AY/U = {[f] : f € w*}. Let B
be the submodel of 2A“/U consisting of all [f] such that f is first-order
definable in . Prove that 2 < B < A“/U.



Set Theory

S1. Assume MA(X;). Fix A, B C R with |A] = |B| =%; and AN B = 0.
Let S and T be countable dense subsets of R. Prove that there is a
continuous f : R — R such that f(A) C S and f(B) CT.

S2. Let M be a countable transitive model for ZFC'. Let P be Cohen
forcing — that is, finite partial functions from w to 2. Let (X;<) € M
be a dense total order. Let G be P-generic over M. Prove that in M[G],
(X; <) cannot be Dedekind-complete.

A total order is Dedekind-complete iff every subset has a greatest lower
bound and a least upper bound. Applying this with the empty subset,
X must have a smallest and a largest element.

S3. Define the sequence (C, : a € S) to be club guessing iff:

1. S C w; is a stationary set of limit ordinals.

2. C,, € o is unbounded in « for each o € S.

3. For every club E C w; there exists a € S such that C, C E.
Define (C, : a € S) to be almost club guessing iff 1,2, and

3'. For every club E C w; there exists o € S and there exists § < «

such that (C, \ ) C E.

Prove that if (C, : @ € S) is almost club guessing, then there exists
B < wy such that (C, \ f:a € S\ B) is club guessing.



Answers

E1. Suppose that II is finite and II and X have the same models. Since
IT is finite, there is a finite n such that o1 A pa A -+ A g, = AIL. Now,
let 2 consist of one cycle of length n + 1. Then A = @1 A pa A+ A @,
so A =11, but & £ X, a contradiction.

E2. For —, let A be any Bernstein set. For «<—, note that there are 2%
disjoint perfect sets. If they all meet A, then |A| = 2%,

E3. Let ¢(x1,22) be Jy[r1 < y < x9], and suppose that ¥ (z1,xs) is
quantifier-free. Let A = (—o00,0] U [1,00) € R. Then A | =0, 1]
and R = ¢[0,1], while A | ¢[0,1] iff R = ¥[0,1]. It follows that
TOWOE V V1, 23 [p(21, 22) < ¥(21, 22)].

C1. First, fix m such that ¢, is total, so that W,, = w. Now, let
f(z,y) = 0 whenever y € {x,m}, and let f(z,y) be undefined otherwise.
By the Recursion Theorem, fix n such that ¢,(y) = f(n,y) for all y.

Then W,, " W,, = W,, = {m,n}, and m # n because ¢, # @n.

C2. Build the computable tree T level by level, cutting off high enough
to diagonalize against computable chains and antichains without making
the tree finite.

C3. If S has k many gaps then Qg is 2(k + 1)-c.e.-complete. When
S = {r}, the proof is: Upper bound: by inspection. Lower bound: Given
a 2-c.e. set C, enumerate 7 many numbers into a c.e. set Wy(,) when
n enters C, and enumerate more numbers into Wy¢,y when n leaves C.
For the general case, we get Qs to be 2n-c.e.-m-complete where n is the
number of maximal intervals [z, y] contained in S.

M1. By taking elementary extensions w times, we get a B > 2 of order
type (W+Z-Q) - (w+Z-Q); here Z - Q means Q blocks of Z. Now, let
7(z) be a type over a finite subset of B. Taking elementary extensions
w more times, we get 7 realized by some ¢ in some € > B of the same
order type. But then we can automorph ¢ back into B, so 7 is realized
in ‘B. Thus, ‘B is saturated.

One might also do this first in the case where 2 has order type w, where
it’s a bit simpler. Then, use the fact that in (w; <), you can define the
order type w? (as an ordering of pairs). This also shows that the result
holds whenever the order type of 2 is any infinite ordinal o < w®.

The result is false for a > w®. To see this, note that given positive
integers ny > ny > -+ > ny, there is a formula 0(z) such that (a; <) |=
) ff € =n+w™ +w"+ .-+ w" for some n < . Thus, the theory
of (a; <) has 2% 1-types, so it has no countable saturated model.
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M2. ¥ is not even w-stable, since C realizes 2% types over (). To see
this, define S = {z: V22 = z}. Note that € € S when —7/2 < 0 < 7/2
and ¢ ¢ S when /2 < 6 < 3n/2. For any f € {0,1}*, let 0; =
7> f(n)4 ™ and let z; = €7, Then (z;)*" € S iff f(k) = 0.

Actually, 3 is not k—stable for any k, since the formula “y — x € S”
defines a total order when restricted to R.

M3. Tt is sufficient to prove that B < 2« /U; then 2 < B will follow us-
ing A < A“/U. Applying the Tarski-Vaught test, it is sufficient to prove
that whenever A /U |= Jxe([fi1],. .., [fa],x) with fi,..., f, definable in
2, there is a definable g such that 2A“/U = ¢([f1], ..., [fa],[g]). Now by
Lo$’s Theorem, A = Jzp(fi(i),..., fu(i),z) for almost every i € w, so
define g(7) to be the least k € w such that A = o(f1(7), ..., fu(i), k).

S1. Let P be the set of all finite partial functions from R to R such that
1. p(ANndom(p)) C S
2. p(BNdom(p)) CT
3. [p(z) — p(y)| < |z — y| whenever {z,y} € [dom(p)]*.
Use a A-system argument to prove that P has the ccc. Then, meet N,
dense sets to get a filter G with g = |J G such that AU B C dom(g) and
dom(g) is dense in R. Then, using (3), g extends uniquely to a continuous
function on R.

S2. In M, let ¢ : Q — X be 1-1 and order-preserving. In M[G], we have
g=UG:w — 2 and let r = > g(n)27". Then r is irrational, and
there is no x € X such that p(Q N (—oo,7)) <z < (QN (r, +00)).

S3. For any 3 < wy, set Cg = (Co \ B : @ € S\ B). Then clearly (1)
still holds for Cg, and (2) also holds whenever [ is a successor ordinal
(otherwise, maybe 3 € S, and then 3 € S\ §but Cs\ 5 =10).

If the result fails, then for each § < wq, Cs;1 is not club guessing, so
we can choose a club Fjs so that there is no o in S with o > § and
(Co\ (6 + 1)) C Es. Then the diagonal intersection, D, is also a club:

D:{'y<w1:7€ﬂ{E5:5<7}}
Applying (3'), fix @ € S and 6 < « such that (C, \ 6) € D. Then
(Ca\(6+1)) S (D\(6+1)) CEs

a contradiction.



