Qualifying Exam Logic August 2005

Instructions:

If you signed up for Computability Theory, do two E and two C problems. If you signed up for Model Theory, do two E and two M problems. If you signed up for Set Theory, do two E and two S problems.

If you think that a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

A *theory* is a set of sentences closed under logical inference.

E1. Let *T* be a theory in the propositional language \mathcal{L} using the propositional variables p_n for $n \in \omega$. Let \mathcal{S} be the set of all \mathcal{L} -sentences. Define a relation \leq on \mathcal{S} by: $\varphi \leq \psi$ iff $T \vdash \varphi \rightarrow \psi$. Note that \leq is transitive and reflexive, so we may define an equivalence relation on \mathcal{S} by: $\varphi \equiv \psi$ iff $\varphi \leq \psi$ and $\psi \leq \varphi$ iff $T \vdash \varphi \leftrightarrow \psi$, and there is a natural partial order on the set of equivalence classes, \mathcal{S}/\equiv .

Find a theory T such that S/\equiv is isomorphic to the collection of all finite and all cofinite subsets of ω (ordered by \subseteq).

E2. Let \mathfrak{M} be a structure for a first-order language \mathcal{L} , and let T be a universal \mathcal{L} -theory (i.e., T has as axioms a set of universal closures of quantifier-free formulas). Prove that \mathfrak{M} is a model of T iff every finitely generated substructure of \mathfrak{M} is a model of T.

To define "finitely generated": If $A \subseteq M$, let $\langle A \rangle$ be the substructre generated by A; so, you add to A the interpretations of all constants of \mathcal{L} and then close under the interpretations of all functions of \mathcal{L} . Then a substructure \mathfrak{M}' of \mathfrak{M} is *finitely generated* iff there is a finite nonempty subset A of M such that $\mathfrak{M}' = \langle A \rangle$. If \mathcal{L} has only predicate symbols, then "finitely generated" is the same as "finite".

E3. Let A be a set totally ordered by <, and assume that in A, there are no increasing or decreasing ω_1 -sequences, and no subsets isomorphic to the rationals. Prove that A is countable.

Computability Theory

C1. Let

$$Q = \{e : W_e = \{0, 1, 2, \dots, e\}\}$$

Prove that for every $C \subseteq \omega$: $C \leq_m Q$ iff C is 2-c.e.

C2. A set $A \subseteq \omega$ is *bi-immune* if neither A nor its complement contains an infinite computable subset.

- a. Show that there is a bi-immune set $A \leq_T \mathbf{0}'$.
- b. Show that there is no bi-immune set which is a finite Boolean combination of computably enumerable sets.

C3. Let \mathcal{E}_2 be the collection of all 2-c.e. sets. Let \mathcal{E} be the collection of all c.e. sets. View both of these as first-order structures whose only relation is \subseteq . Prove that the structures \mathcal{E} and \mathcal{E}_2 are not elementarily equivalent; that is, find a first-order sentence (just using \subseteq) which is true in one and false in the other.

A set $C \subseteq \omega$ is 2-c.e. iff there are computably enumerable sets A and B such that $C = A \setminus B$.

Model Theory

M1. Let T be a complete first order theory, and let M be a monster model for T.

Recall that T eliminates \exists^{∞} if for every formula $\phi(x, \bar{y})$ there is a formula $\psi(\bar{y})$ such that for every $\bar{a} \in M$: $M \models \psi(\bar{a})$ iff $\phi(M, \bar{a})$ is infinite. We then denote ψ by $(\exists^{\infty} x)\phi(x, \bar{y})$.

Let $\bar{a} = a_1, \ldots, a_n$ and \bar{b} be two sequences of elements of M. We define the algebraic dimension, $\operatorname{algdim}(\bar{a}/\bar{b})$, as follows: If n = 1: $\operatorname{algdim}(a_1/\bar{b})$ is equal to 0 if $a_1 \in \operatorname{acl}(\bar{b})$, and to 1 if $a_1 \notin \operatorname{acl}(\bar{b})$. In the general case:

$$\operatorname{algdim}(a_1,\ldots,a_n/\bar{b}) = \sum_{i=1}^n \operatorname{algdim}(a_i / \bar{b}, a_1,\ldots,a_{i-1}).$$

Notice that $\operatorname{algdim}(\bar{a})$ depends on the order of \bar{a} .

Finally, let $\phi(\bar{x}, \bar{y})$ be a formula, and $b \in M$ of the same length as \bar{y} . Then $\operatorname{algdim}\phi(\bar{x}, \bar{b}) = \max\{\operatorname{algdim}(\bar{a}/\bar{b}) : M \models \phi(\bar{a}, \bar{b})\}.$

Show that if T eliminates the \exists^{∞} quantifier, then the algebraic dimension is definable in the following sense: for every formula $\phi(\bar{x}, \bar{y})$ and every n there is a formula $\psi(\bar{y})$ such that for all $\bar{b} \in M$: $M \models \psi(\bar{b})$ iff $\operatorname{algdim} \phi(\bar{x}, \bar{b}) = n$. (Hint: prove first for $\operatorname{algdim} \phi(\bar{x}, \bar{b}) \ge n$)

M2. Let T be a theory in a countably infinite language \mathcal{L} .

- a. Assume that for every finite sub-language $\mathcal{L}' \subset \mathcal{L}$, the theory $T \upharpoonright \mathcal{L}'$ is ω -categorical. Prove that T eliminates \exists^{∞} .
- b. Show that if T is ω -categorical then for every finite sub-language $\mathcal{L}' \subset \mathcal{L}$, the theory $T \upharpoonright \mathcal{L}'$ is ω -categorical.
- c. Give an example showing that the converse to (b) is false.

M3. Let \mathcal{L} consist of a single binary relation R. Let T_1 be the theory of triangle-free symmetric graphs, axiomatised as follows:

$$(\forall x) \neg Rxx$$
 $(\forall xy)(Rxy \rightarrow Ryx)$ $(\forall xyz) \neg (Rxy\&Ryz\&Rzx)$

Let T_2 be T_1 plus the axiom:

$$(\forall x_0, \dots, x_{m-1}, y_0, \dots, y_{n-1}) \left(\left(\bigwedge_{j < k < n} \neg Ry_j y_k \land \bigwedge_{i < m} \bigwedge_{j < n} x_i \neq y_j \right) \longrightarrow \\ (\exists z) \left(\bigwedge_{i < m} \neg Rz x_i \land \bigwedge_{j < n} Rz y_j \right) \right)$$

for each $n, m \in \omega$.

a. Prove that T_2 has a model.

b. Prove that T_2 has quantifier elimination.

Set Theory

S1. Assume V = L. Let P be a perfect set of real numbers (that is, P is closed and non-empty and has no isolated points). Prove that there are $x, y \in P$ with $x \neq y$ such that x, y have the same L-rank; that is, $x, y \in L(\alpha + 1) \setminus L(\alpha)$ for some α . You may view real numbers concretely as Dedekind cuts in the rationals.

S2. Let M be a countable transitive model of ZFC+CH. Let \mathbb{P} be a poset in M which is countable in M. Let G be \mathbb{P} -generic over M. Prove that in M[G], there is a nonprincipal ultrafilter \mathcal{U} on ω such that: For every $f \in M[G] \cap \omega^{\omega}$ there exists $g \in M \cap \omega^{\omega}$ such that $\{n : f(n) = g(n)\} \in \mathcal{U}$.

S3. Assume MA + \neg CH. Prove that if A_j , for $j < \omega$, are arbitrary sets and $\limsup_{j \in H} A_j$ is uncountable for all infinite $H \subseteq \omega$, then there is an infinite $H \subseteq \omega$ for which $\bigcap_{j \in H} A_j$ is uncountable.

Here, $\limsup_{j \in H} A_j$ is the collection of all x such that $x \in A_j$ for infinitely many $j \in H$.

Answers

E1. Let $T = \{p_{n+1} \to p_n \mid n \in \omega\}$. Let F be the family of finite and cofinite subsets of ω . Define a map from F into S/\equiv by mapping $\{n\}$ to $[p_{n-1} \land \neg p_n]$ (or to $[\neg p_0]$ for n = 0). It is easy to see that this induces a 1–1 map from F into S/\equiv , so we only need to check that the map is onto. Let φ be any propositional formula, without loss of generality in disjunctive normal form. Then each disjunct is a conjunction of p_i 's and $\neg p_j$'s; by T, we may assume that there is at most one p_i and at most one $\neg p_j$ (namely, for the largest i and the least j occurring, if any). By T, we have i < j. Again without loss of generality (by adding more disjuncts), we may assume that the disjunct is of the form $p_i, \neg p_0$, or $p_i \land \neg p_{i+1}$. Now the pre-image of the latter two are singletons, and the pre-image of $\neg p_i$.

E2. \Rightarrow : If $\mathfrak{M} \models T$ and T is universal, then every substructure of \mathfrak{M} is a model of T.

 $\Leftarrow: \text{ If } \mathfrak{M} \not\models T, \text{ say } \mathfrak{M} \not\models \varphi[a_1, \ldots, a_n], \text{ where } \varphi \text{ is quantifier-free and} \\ \forall x_1, \ldots, x_n \varphi(x_1, \ldots, x_n) \in T. \text{ Then } \langle \{a_1, \ldots, a_n\} \rangle \not\models T.$

E3. If $a \leq b$, let [a, b] denote the usual interval, and if $b \leq a$, let [a, b] = [b, a]. Define $a \sim b$ iff [a, b] is countable. Then \sim is an equivalence relation, and the fact that there are no increasing or decreasing ω_1 -sequences implies that each equivalence class is countable. Next, note that the equivalence classes are densely ordered; that is, if a < c and $a \not \sim c$, then there is a b with a < b < c and $a \not \sim b$ and $b \not \sim c$ Thus, if there's more than one class, we could pick out a subset S isomorphic to the rationals, where S contains 0 or 1 elements from each equivalence class. So, if there is no such subset, there is only one class, so A is countable.

C1. It easy to see that Q is 2-c.e. and that the 2-c.e. sets are closed under \leq_m . So it is enough to see that if A and B are c.e. then there exists a computable function $f: \omega \to \omega$ such that $f^{-1}(Q) = A \cap \overline{B}$. We first claim that there exists a total computable g(x, y) such that for every $x, y \in \omega$

$$W_{g(x,y)} = \begin{cases} \emptyset & \text{if } x \notin A\\ \{0,1,2,\ldots,y\} & \text{if } x \in A \text{ and } x \notin B\\ \omega & \text{if } x \in A \text{ and } x \in B \end{cases}$$

To see this define a partial computable function

$$\rho(x, y.u) = \begin{cases} \uparrow & \text{if } x \notin A \\ \downarrow = 0 & \text{if } x \in A \text{ and } u \leq y \\ \downarrow = 0 & \text{if } x \in A \text{ and } x \in B \end{cases}$$

and use the S-n-m theorem to get $\psi_{g(x,y)}(u) = \rho(x, y.u)$. By the uniform version of the recursion theorem there exists a total computable f such that $W_{f(x)} = W_{g(x,f(x))}$ for every x. But then $x \in A \cap \overline{B}$ iff $f(x) \in Q$.

C2. a. Note that any infinite c.e. set contains an infinite computable subset so we may replace computable by c.e. in the definition of bi-immune. Define the characteristic function of the set A by a finite-extension oracle construction as $\chi_A = \bigcup_{s \in \omega} \sigma_s$ where $\sigma_s \in 2^{<\omega}$. Obtain σ_s by recursion on s as follows: Set $\sigma_0 = \langle \rangle$. For s = 2e, check whether there is an element $x \geq |\sigma_s|$ in W_e ; if so, let $\sigma_{s+1} \supset \sigma_s$ with $\sigma_{s+1}(x) = 1$; else let $\sigma_{s+1} = \sigma_s$. This will ensure that if W_e is infinite then $W_e \cap A \neq \emptyset$. Similarly ensure $W_e \cap \overline{A} \neq \emptyset$ when defining σ_{2e+2} .

b. Writing the Boolean combination X of c.e. sets in conjunctive normal form, we may assume that $X = X_0 \cup X_1 \cup \cdots \cup X_n$ where each X_i is the intersection of c.e. and co-c.e. sets. Since the c.e. sets, and the co-c.e. sets, are closed under intersection, we may assume that each X_i is d.c.e., i.e., of the form $Y_i \setminus Z_i$ where Y_i and Z_i are c.e. By further manipulation, we may assume that $Y_0 \supseteq Z_0 \supseteq Y_1 \supseteq \cdots \supseteq Z_n$. Without loss of generality, we may assume that all these sets (except possibly Z_n) are infinite. But then either X contains the infinite c.e. set $Y_n \setminus Z_n$, or \overline{X} contains the infinite c.e. set Z_n .

Alternative solution for b. Suppose A_1, \ldots, A_n are c.e. sets. Construct a descending sequence of infinite c.e. sets, $B_1 \supseteq B_2 \supseteq \cdots \supseteq B_n$ such that $B_i \subseteq A_i$ or $B_i \subseteq \overline{A_i}$ for each *i*. This is possible since given B_i either $B_i \cap A_{i+1}$ is infinite and we can take $B_{i+1} = B_i \cap A_{i+1}$ or it is finite and we can take $B_{i+1} = B_i \setminus A_{i+1}$. But then it is easy to see that that B_n is contained in or disjoint from any boolean combination of the A_i . **C3.** First note that closure under unions, for \mathcal{E} or for \mathcal{E}_2 , is expressed by: $\forall Y, Z \exists X [Y \subseteq X \land Z \subseteq X \land \forall W [Y \subseteq W \land Z \subseteq W \rightarrow X \subseteq W]]$ This is true in \mathcal{E} , but false in \mathcal{E}_2 . To see this, let A be a 2-c.e. set such that \overline{A} is not 2-c.e.; then $\overline{A} = B \cup \overline{C}$ where B and C are c.e. sets, so that B and \overline{C} are both 2-c.e. An example of such an A is any universal 2-c.e. set; e.g., $A = \{(n_0, n_1, m) : (n_0, m) \in U \land (n_1, m) \notin U\}$, where U is a universal c.e. set. **S1.** Let $\rho(z)$ be the *L*-rank of *z*; so $z \in L(\rho(z) + 1) \setminus L(\rho(z))$.

Let A, B be disjoint subsets of $P \setminus \mathbb{Q}$ such that $\sup(A) < \inf(B)$ and A and B are order-isomorphic to \mathbb{Q} . Let f be some order-isomorphism from A onto B. Fix a countable δ such that $L(\delta)$ contains A, B, f.

Note that $\sup(X) \in \overline{X} \subset P$ whenever $X \subseteq A$ or $X \subseteq B$; also, $\sup(X) = \bigcup(X)$ if we view reals as lower Dedekind cuts in the rationals, so that $\sup(X)$ gets constructed as soon as X gets constructed.

Let A^* be the set of $x \in A \setminus A$ such that x is a limit from the left (i.e., $x = \sup X$ for some $X \in [a]^{\omega}$). Then $|A^*| = 2^{\aleph_0} = \aleph_1$. For $x \in A^*$, let $\widehat{x} = \{a \in A : a < x\}$; then $x = \sup(\widehat{x})$. Note that $\rho(x) = \rho(\widehat{x})$ provided $\rho(x) > \delta$. Likewise define B^* and \widehat{y} for $y \in B^*$.

Now, fix any $\alpha > \delta$ such that $\alpha = \rho(x)$ for some $x \in A^*$. Let $y = \sup(f(A))$. Then $y \in B^*$ and $\widehat{y} = f(A)$, and $\rho(y) = \rho(\widehat{y}) = \rho(A) = \rho(x)$.

S2. In M[G], we still have CH, so list ω^{ω} as $\{f_{\alpha} : \alpha < \omega_1\}$. Now, inductively choose x_{α} and H_{α} for $\alpha < \omega_1$ so that:

1. H_{α} is an infinite subset of ω .

- 2. $g_{\alpha} \in \omega^{\omega} \cap M$.
- 3. $f_{\alpha}(j) = g_{\alpha}(j)$ for all $j \in H_{\alpha+1}$.
- 4. $\xi < \alpha \rightarrow H_{\alpha} \subseteq^* H_{\xi}$.

Assuming this can be done, we choose $\mathcal{U} \supseteq \{H_{\alpha} : \alpha < \omega_1\}$. To do the construction: H_0 can be ω , and the H_{α} for limit α are no problem, since (3) says nothing there. Given H_{α} , we choose g_{α} and $H_{\alpha+1} \subseteq H_{\alpha}$ using the following argument in M:

Back in M, we have \mathbb{P} -names \dot{H} and \dot{f} such that $\mathbb{1} \Vdash \dot{H} \in [\omega]^{\omega}$ and $\mathbb{1} \Vdash \dot{f} \in \omega^{\omega}$. Then, using the fact that \mathbb{P} is countable, we can, in ω steps, construct a $g \in \omega^{\omega}$ such that $\mathbb{1} \Vdash |\{j \in \dot{H} : g(j) = \dot{f}(j)\}| = \aleph_0$.

S3. Just in ZFC: inductively choose x_{α} and H_{α} for $\alpha < \omega_1$ so that:

- 1. H_{α} is an infinite subset of ω .
- 2. $x_{\alpha} \in A_j$ for all $j \in H_{\alpha+1}$.
- 3. $\xi < \alpha \rightarrow H_{\alpha} \subseteq^* H_{\xi} \& x_{\alpha} \neq x_{\xi}$.

Given H_{α} and x_{ξ} for all $\xi < \alpha$, we choose x_{α} and $H_{\alpha+1} \subseteq H_{\alpha}$ using the fact that $\limsup_{j \in H_{\alpha}} A_j$ is uncountable. H_0 can be ω , and the H_{α} for limit α are no problem, since (2) says nothing there.

Now, using MA + \neg CH (or just $\mathfrak{p} > \aleph_1$ or $\mathfrak{t} > \aleph_1$), choose an infinite H such that $\{\alpha : H \subseteq H_\alpha\}$ is uncountable.

M1. We show by induction on n and the length of $\bar{x} = x_1, \ldots, x_m$ that $\operatorname{algdim}\phi(\bar{x}; \bar{b}) \geq n$ is definable.

– If n = 0 then this is always true.

- If n > 0 and m = 0, this is always false.

- If m, n > 0 then: $\operatorname{algdim} \phi(\bar{x}; b) \ge n$ holds if and only if

 $\exists x_1 \text{``algdim}\phi(x_2,\ldots,x_m;x_1,\bar{b}) \ge n\text{''},$

or:

$$\exists^{\infty} x_1$$
 "algdim $\phi(x_2, \ldots, x_m; x_1, \bar{b}) \ge n - 1$ ".

Indeed, one direction is clear, while for the other, we observe that if the second holds then there exists $a_1 \notin \operatorname{acl}(\overline{b})$ such that

 $\operatorname{algdim}\phi(x_2,\ldots,x_m;a_1,\bar{b}) \ge n-1$,

whereby $\operatorname{algdim}\phi(x_1,\ldots,x_m;\bar{b}) \ge n$.

As "algdim $\phi(\bar{x}; \bar{b}) \ge n$ " is definable, so is "algdim $\phi(\bar{x}; \bar{b}) = n$ ".

M2.

a. Assume first that T is ω -categorical, and $\phi(x, \bar{y})$ is a formula, $|\bar{y}| = n$. For any $M \models T$ and $\bar{b} \in M^n$, whether or not $\phi(M, \bar{b})$ is infinite or not depends solely on $\operatorname{tp}(\bar{b})$. Let:

$$X = \{ \operatorname{tp}(\bar{b}) \colon M \models T, \bar{b} \in M^n, |\phi(M, \bar{b})| \ge \omega \} \subseteq S_n(T).$$

By Ryll-Nardzewski's theorem, the space of types $S_n(T)$ is a finite discrete topological space, whereby X is clopen. Since X is clopen there exists a formula $\psi(\bar{y})$ such that $X = [\psi] = \{p \in S_n(T) : \psi \in p\}$. We conclude that $\psi(\bar{y})$ is the formula $(\exists^{\infty} x)\phi(x,\bar{y})$.

Now T needs not be ω -categorical, so let \mathcal{L}' be the set of symbols in ϕ , and let $T' = T \upharpoonright_{\mathcal{L}'}$. Then Every model of T is a model of T' and T' is ω -categorical, so we reduce to the previous case.

b. Use Ryll-Nardzewski: T is ω -categorical if and only if $S_n(T)$ is finite for all n.

c. $\mathcal{L} = \{P_n : n < \omega\}$, each P_n is a unary predicate symbol. T says that every conjunction of the form $\bigwedge_{n < m} Q_n(x)$ where each Q_n is either P_n or $\neg P_n$ has infinitely many solutions.

M3.

a. T_1 is the theory of a triangle-free graph. To build a model of T_2 , start with M_0 being a single point with no edges. Assume we have $M_n \models T_1$, and build a structure $M_{n+1} \supseteq M_n$: its underlying set is $|M_n| \cup \{c_{\bar{a},\bar{b}} : \bar{a}, \bar{b} \in M\}$. If $\bar{a}, \bar{b} \in M_n$ satisfy the antecedent of the additional axiom then $c_{\bar{a},\bar{b}}$ has an edge with each b_i an no other; otherwise, $c_{\bar{a},\bar{b}}$ has no edges. Verify that M_{n+1} is also a triangle-free graph.

 $M = \bigcup_n M_n$ is a model of T_2 .

b. It suffices to show that if $M, N \models T_2$ have a common substructure $A, \bar{a} \in A$, and $\phi(z, \bar{w})$ is a conjunction of atomic formulas and their negations, then:

$$M \models \exists z \, \phi(z, \bar{a}) \Longleftrightarrow N \models \exists z \, \phi(z, \bar{a}).$$

Indeed, ϕ is therefore of the form $\bigwedge_{i < m} \neg Rzx_i \land \bigwedge_{j < n} Rzy_j$, where \bar{x} and \bar{y} are sub-tuples of \bar{w} . Let \bar{b} and \bar{c} be the corresponding sub-tuples of \bar{a} . Assume now that $M \models \exists z \phi(z, \bar{a})$, i.e., that $M \models (\exists z) (\bigwedge_{i < m} \neg Rzb_i \land \bigwedge_{i < n} Rzc_j)$. As M is triangle-free we must have:

$$M \models \bigwedge_{j < k < n} \neg Rc_j c_k \land \bigwedge_{i < m} \bigwedge_{j < n} b_i \neq c_j.$$

Then the same holds in A and therefore in N. Since $N \models T_2$: $N \models (\exists z) (\bigwedge_{i < m} \neg Rzb_i \land \bigwedge_{j < n} Rzc_j)$, whereby $N \models \exists z \phi(z, \bar{a})$.