Qualifying Exam
Logic
August 2005
Instructions:

If you signed up for Computability Theory, do two E and two C problems.
If you signed up for Model Theory, do two E and two M problems.
If you signed up for Set Theory, do two E and two S problems.

If you think that a problem has been stated incorrectly, mention this
to the proctor and indicate your interpretation in your solution. In such
cases, do not interpret the problem in such a way that it becomes trivial.

A theory is a set of sentences closed under logical inference.

E1. Let T be a theory in the propositional language £ using the proposi-
tional variables p, for n € w. Let § be the set of all £-sentences. Define
a relation < on § by: ¢ < ¢ it T F ¢ — 1. Note that < is transitive
and reflexive, so we may define an equivalence relation on S by: ¢ = ¢
iff p <Y and ¥ < ¢ iff T F @ < 1, and there is a natural partial order
on the set of equivalence classes, S/=.

Find a theory T such that S/= is isomorphic to the collection of all
finite and all cofinite subsets of w (ordered by C).

E2. Let 9 be a structure for a first-order language £, and let T be a
universal L-theory (i.e., 7" has as axioms a set of universal closures of
quantifier-free formulas). Prove that 91 is a model of T iff every finitely
generated substructure of 9 is a model of T

To define “finitely generated”: If A C M, let (A) be the substructre
generated by A; so, you add to A the interpretations of all constants of
L and then close under the interpretations of all functions of £. Then a
substructure 9 of M is finitely generated iff there is a finite nonempty
subset A of M such that 9 = (A). If £ has only predicate symbols,
then “finitely generated” is the same as “finite”.

E3. Let A be a set totally ordered by <, and assume that in A, there
are no increasing or decreasing w;—sequences, and no subsets isomorphic
to the rationals. Prove that A is countable.



Computability Theory

C1. Let
Q={e:W.={0,1,2,...,¢e}}
Prove that for every C' Cw: C <, Q iff C'is 2-c.e.

C2. A set A C w is bi-immune if neither A nor its complement contains
an infinite computable subset.
a. Show that there is a bi-immune set A <7 0'.
b. Show that there is no bi-immune set which is a finite Boolean
combination of computably enumerable sets.

C3. Let & be the collection of all 2-c.e. sets. Let £ be the collection
of all c.e. sets. View both of these as first-order structures whose only
relation is C. Prove that the structures £ and & are not elementarily
equivalent; that is, find a first-order sentence (just using C) which is true
in one and false in the other.

A set C' C w is 2-c.e. iff there are computably enumerable sets A and
B such that C' = A\ B.



Model Theory

M1. Let T be a complete first order theory, and let M be a monster
model for 7.

Recall that T eliminates 3°° if for every formula ¢(x,7) there is a
formula () such that for every a € M: M = (a) iff (M, a) is infinite.
We then denote ¢ by (I%z)¢(z, 7).

Let @ = ai,...,a, and b be two sequences of elements of M. We define
the algebraic dimension, algdim(a/b), as follows: If n = 1: algdim(a,; /b)
is equal to 0 if a; € acl(b), and to 1 if a; ¢ acl(b). In the general case:

algdim(ay, ..., a,/b) = Z algdim(a; / b, ai,...,a;_1).
i=1
Notice that algdim(a) depends on the order of a.

Finally, let ¢(Z,¥) be a formula, and b € M of the same length as .
Then algdim¢(z, b) = max{algdim(a/b) : M = ¢(a,b)}.

Show that if 7" eliminates the 3 quantifier, then the algebraic dimen-
sion is definable in the following sense: for every formula ¢(z,y) and
every n there is a formula 1(g) such that for all b € M: M k= +(b) iff
algdime(7,b) = n. (Hint: prove first for algdime(z,b) > n)

M2. Let T be a theory in a countably infinite language L.

a. Assume that for every finite sub-language £’ C L, the theory T'[L’
is w-categorical. Prove that T' eliminates 3°°.

b. Show that if T" is w-categorical then for every finite sub-language
L' C L, the theory T'[L' is w-categorical.

c. Give an example showing that the converse to (b) is false.

M3. Let L consist of a single binary relation R. Let T} be the theory of
triangle-free symmetric graphs, axiomatised as follows:

(Vz)-Rzxx (Vzy)(Rry — Ryz) (Vayz)-(Rry& Ryz&Rzx)
Let T5 be T} plus the axiom:

(‘v’xo,...,xm_l,yo,...,yn_l)(( /\ ﬁRyjyk A /\ /\xl%yj) E—

j<k<n i<m j<n

(32)( /\ —Rzx; A /\ Rzyj)>

<m Jj<n
for each n,m € w.

a. Prove that T, has a model.
b. Prove that T5 has quantifier elimination.



Set Theory

S1. Assume V = L. Let P be a perfect set of real numbers (that is, P
is closed and non-empty and has no isolated points). Prove that there
are r,y € P with x # y such that x,y have the same L-rank; that is,
z,y € L(a+1)\L(«) for some a. You may view real numbers concretely
as Dedekind cuts in the rationals.

S2. Let M be a countable transitive model of ZFC+CH. Let P be a poset
in M which is countable in M. Let G be P-generic over M. Prove that
in M[G], there is a nonprincipal ultrafilter & on w such that: For every
f € M[G]Nw there exists g € M Nw* such that {n: f(n) =g(n)} € U.

S3. Assume MA + —CH. Prove that if A;, for j < w, are arbitrary sets
and lim SUpjep A; is uncountable for all infinite H C w, then there is an
infinite H C w for which iexr Aj 1s uncountable.

Here, limsup,cy A; is the collection of all z such that x € A; for
infinitely many j € H.



Answers

El. Let T = {ppy1 — pn | n € w}. Let F be the family of finite and
cofinite subsets of w. Define a map from F' into S/= by mapping {n} to
[Pn—1 A =pp] (or to [—po] for m = 0). It is easy to see that this induces
a 1-1 map from F into S/=, so we only need to check that the map is
onto. Let ¢ be any propositional formula, without loss of generality in
disjunctive normal form. Then each disjunct is a conjunction of p;’s and
—p;’s; by T', we may assume that there is at most one p; and at most one
—p; (namely, for the largest ¢ and the least j occurring, if any). By T, we
have i < j. Again without loss of generality (by adding more disjuncts),
we may assume that the disjunct is of the form p;, —pg, or p; A —piiq.
Now the pre-image of the latter two are singletons, and the pre-image of
p; is the complement of the pre-image of —p;.

E2. =: If M = T and T is universal, then every substructure of 9 is a
model of 7.

< UM E T, say M B~ pla, . .., a,), where ¢ is quantifier-free and
Yoy, ..., Top(21, ... x,) € T. Then ({a1,...,a,}) ET.

E3. If a < b, let [a,b] denote the usual interval, and if b < a, let
[a,b] = [b,a]. Define a ~ b iff [a,b] is countable. Then ~ is an equiv-
alence relation, and the fact that there are no increasing or decreasing
wi—sequences implies that each equivalence class is countable. Next, note
that the equivalence classes are densely ordered; that is, if ¢ < ¢ and
a + ¢, then there is a b with a < b < ¢ and a ¢ b and b ¢ ¢ Thus,
if there’s more than one class, we could pick out a subset S isomorphic
to the rationals, where S contains 0 or 1 elements from each equivalence
class. So, if there is no such subset, there is only one class, so A is
countable.



C1. It easy to see that @) is 2-c.e. and that the 2-c.e. sets are closed
under <,,. So it is enough to see that if A and B are c.e. then there
exists a computable function f : w — w such that f~1(Q) = AN B. We
first claim that there exists a total computable g(z,y) such that for every
T,y EwW

0 ife ¢ A
Wy =4 10,1,2,...,y} ifrecAandz ¢ B
w ifreAand z € B

To see this define a partial computable function

1 ifx ¢ A
ple,yu) =< |=0 ifreAdandu<y
=0 ifzreAandxeB

and use the S-n-m theorem to get 1y, (u) = p(x,y.u). By the uniform
version of the recursion theorem there exists a total computable f such
that Wy = Wy(e, ) for every x. But then v € AN B iff f(z) € Q.

C2. a. Note that any infinite c.e. set contains an infinite computable sub-
set so we may replace computable by c.e. in the definition of bi-immune.
Define the characteristic function of the set A by a finite-extension oracle
construction as x4 = Usew os where o, € 2<“. Obtain o, by recursion on
s as follows: Set og = (). For s = 2e¢, check whether there is an element
x> |os| in We; if so, let 0411 D 0y with o,y1(x) = 1; else let 0411 = 0.
This will ensure that if W, is infinite then W, N A # (). Similarly ensure
W, N A # () when defining oaes.

b. Writing the Boolean combination X of c.e. sets in conjunctive nor-
mal form, we may assume that X = XoU X; U---U X, where each Xj is
the intersection of c.e. and co-c.e. sets. Since the c.e. sets, and the co-c.e.
sets, are closed under intersection, we may assume that each Xj; is d.c.e.,
i.e., of the form Y;\ Z; where Y; and Z; are c.e. By further manipulation,
we may assume that Yy O Zy DY) O .-+ D Z,,. Without loss of general-
ity, we may assume that all these sets (except possibly Z,) are infinite.
But then either X contains the infinite c.e. set Y, \ Z,, or X contains the
infinite c.e. set Z,.

Alternative solution for b. Suppose Ay, ..., A, are c.e. sets. Construct
a descending sequence of infinite c.e. sets, By O By O --- O B, such
that B; C A; or B; C A; for each i. This is possible since given B; either
B; N A;y1 is infinite and we can take B;; 1 = B; N A;,1 or it is finite and
we can take B;;1 = B; \ A;11. But then it is easy to see that that B, is

contained in or disjoint from any boolean combination of the A;.
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C3. First note that closure under unions, for £ or for &, is expressed by:
VW, ZAX[YCX ANZCX NVWIYCW A ZCW — X CW]

This is true in &, but false in &. To see this, let A be a 2-c.e. set such
that A is not 2-c.e.; then A = BUC where B and C are c.e. sets, so that
B and C are both 2-c.e. An example of such an A is any universal 2-c.e.
set; e.g., A = {(ng,n1,m) : (ng,m) € U A (n1,m) ¢ U}, where U is a
universal c.e. set.



S1. Let p(z) be the L-rank of z; so z € L(p(z) + 1)\ L(p(2)).

Let A, B be disjoint subsets of P\ Q such that sup(A) < inf(B) and
A and B are order-isomorphic to Q. Let f be some order-isomorphism
from A onto B. Fix a countable § such that L(J) contains A, B, f.

Note that sup(X) € X C P whenever X C A or X C B; also,
sup(X) = J(X) if we view reals as lower Dedekind cuts in the ratio-
nals, so that sup(X) gets constructed as soon as X gets constructed.
Let A* be the set of z € A\ A such that x is a limit from the left (i.e.,
= sup X for some X € [a]*). Then |A*| = 2% = N;. For x € A*, let
= {a € A:a < zx}; then x = sup(Z). Note that p(x) = p(Z) provided
p(x) > 6. Likewise define B* and y for y € B*.

Now, fix any a > § such that a = p(z) for some x € A*. Let y =

sup(f(A)). Then y € B* and § = f(A), and ply) = p(G) = p(A) = p(x).

S2. In MIG], we still have CH, so list w* as {f, : @ < w;}. Now,
inductively choose z, and H, for a < w; so that:

x
T

1. H, is an infinite subset of w.

2. go EWNM.

3. fa(.]) = ga(j> for aH] € Ha+1-

4. {<a — H,C" He.
Assuming this can be done, we choose U O {H, : @ < wi}. To do the
construction: Hy can be w, and the H, for limit o are no problem, since
(3) says nothing there. Given H,, we choose g, and H,y; C H, using
the following argument in M:

Back in M, we have P-names H and f such that 1 IF H € [w]* and

11+ f € w¥. Then, using the fact thet P is countable, we can, in w steps,
construct a g € w* such that 1 I |{j € H : g(j) = ()} = No.

S3. Just in ZFC: inductively choose z, and H, for a < w; so that:

1. H, is an infinite subset of w.

2. 2 € Ajforall j € Hoyy.

3. E<a — Hy,C" He & v # e
Given H, and z¢ for all £ < a, we choose z, and H,41 € H, using the
fact that limsup,cy A; is uncountable. Hy can be w, and the H, for
limit v are no problem, since (2) says nothing there.

Now, using MA 4+ —CH (or just p > ¥y or t > 8;), choose an infinite

H such that {a: H C H,} is uncountable.



M1. We show by induction on n and the length of & = z4,...,z,, that
algdime(z; b) > n is definable.

— If n = 0 then this is always true.

—If n > 0 and m = 0, this is always false.

—If m,n > 0 then: algdim¢(Z;b) > n holds if and only if

Jz “algdime(xs, . . ., Ty 21,b0) > 17,

or:
3%z “algdime (o, . . ., Ty 21, B) >n—1,
Indeed, one direction is clear, while for the other, we observe that if

the second holds then there exists a; ¢ acl(h) such that

algdimo(zy, ..., o a1,b) >n—1 |

whereby algdime(x1, ..., 2,;0) > n. B
As “algdime(z;b) > n” is definable, so is “algdime(z;b) = n”.

M2.
a. Assume first that T is w-categorical, and ¢(x, 7) is a formula, |y| = n.
For any M = T and b € M™, whether or not ¢(M,b) is infinite or not

depends solely on tp(b). Let:
X ={tp(b): M =T,be M", |p(M,b)| > w} C S,(T).

By Ryll-Nardzewski’s theorem, the space of types S, (T') is a finite discrete
topological space, whereby X is clopen. Since X is clopen there exists
a formula ¢ (y) such that X = [¢] = {p € S,(T): ¢ € p}. We conclude
that ¢(y) is the formula (I°z)¢(z, y).

Now T needs not be w-categorical, so let £ be the set of symbols in
¢, and let 7" = T'[ ;. Then Every model of T is a model of 7" and T” is
w-categorical, so we reduce to the previous case.

b. Use Ryll-Nardzewski: T is w-categorical if and only if .S, (7') is finite
for all n.

c. L={P,: n <w}, each P, is a unary predicate symbol. T says that
every conjunction of the form A, _, @ (z) where each @, is either P, or
=P, has infinitely many solutions.



Ms3.

a. T is the theory of a triangle-free graph. To build a model of T5, start
with M, being a single point with no edges. Assume we have M, = T7,
and build a structure M, 1 D M,: its underlying set is | M,|U{c,5: a,b €
M}. If @, b € M, satisfy the antecedent of the additional axiom then Cab
has an edge with each b; an no other; otherwise, ¢; ; has no edges. Verify
that M, is also a triangle-free graph.

M =, M, is a model of T5.

b. It suffices to show that if M, N | T, have a common substructure
A, a € A, and ¢(z,w) is a conjunction of atomic formulas and their
negations, then:

M E 3z¢(z,a) <= N = Iz ¢(z,a).
Indeed, ¢ is therefore of the form A,_, —Rzz; AN\, _,

g are sub-tuples of @. Let b and ¢ be the corresponding sub-tuples of a.
Assume now that M = 3z ¢(z,a), ie., that M = (3z)( A,.,, "Rzb; A
Nj<n Rzc;). As M is triangle-free we must have:

M'Z /\ ﬁRCjCk VAN /\/\bl#cj
j<k<n i<m j<n

Then the same holds in A and therefore in N. Since N = Ty: N |
(32)( Aicsn ~R2bi A Nj<n Rzc;), whereby N |= 3z ¢(z, a).

Rzy;, where Z and

<m
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