
Qualifying Exam
Logic

August 2005

Instructions:

If you signed up for Computability Theory, do two E and two C problems.
If you signed up for Model Theory, do two E and two M problems.
If you signed up for Set Theory, do two E and two S problems.

If you think that a problem has been stated incorrectly, mention this
to the proctor and indicate your interpretation in your solution. In such
cases, do not interpret the problem in such a way that it becomes trivial.

A theory is a set of sentences closed under logical inference.

E1. Let T be a theory in the propositional language L using the proposi-
tional variables pn for n ∈ ω. Let S be the set of all L-sentences. Define
a relation ≤ on S by: ϕ ≤ ψ iff T ` ϕ → ψ. Note that ≤ is transitive
and reflexive, so we may define an equivalence relation on S by: ϕ ≡ ψ
iff ϕ ≤ ψ and ψ ≤ ϕ iff T ` ϕ ↔ ψ, and there is a natural partial order
on the set of equivalence classes, S/≡.

Find a theory T such that S/≡ is isomorphic to the collection of all
finite and all cofinite subsets of ω (ordered by ⊆).

E2. Let M be a structure for a first-order language L, and let T be a
universal L-theory (i.e., T has as axioms a set of universal closures of
quantifier-free formulas). Prove that M is a model of T iff every finitely
generated substructure of M is a model of T .

To define “finitely generated”: If A ⊆ M , let 〈A〉 be the substructre
generated by A; so, you add to A the interpretations of all constants of
L and then close under the interpretations of all functions of L. Then a
substructure M′ of M is finitely generated iff there is a finite nonempty
subset A of M such that M′ = 〈A〉. If L has only predicate symbols,
then “finitely generated” is the same as “finite”.

E3. Let A be a set totally ordered by <, and assume that in A, there
are no increasing or decreasing ω1–sequences, and no subsets isomorphic
to the rationals. Prove that A is countable.

1



Computability Theory

C1. Let
Q = {e : We = {0, 1, 2, . . . , e}} .

Prove that for every C ⊆ ω: C ≤m Q iff C is 2-c.e.

C2. A set A ⊆ ω is bi-immune if neither A nor its complement contains
an infinite computable subset.

a. Show that there is a bi-immune set A ≤T 0′.
b. Show that there is no bi-immune set which is a finite Boolean

combination of computably enumerable sets.

C3. Let E2 be the collection of all 2-c.e. sets. Let E be the collection
of all c.e. sets. View both of these as first-order structures whose only
relation is ⊆. Prove that the structures E and E2 are not elementarily
equivalent; that is, find a first-order sentence (just using ⊆) which is true
in one and false in the other.

A set C ⊆ ω is 2-c.e. iff there are computably enumerable sets A and
B such that C = A \B.
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Model Theory

M1. Let T be a complete first order theory, and let M be a monster
model for T .

Recall that T eliminates ∃∞ if for every formula φ(x, ȳ) there is a
formula ψ(ȳ) such that for every ā ∈M : M |= ψ(ā) iff φ(M, ā) is infinite.
We then denote ψ by (∃∞x)φ(x, ȳ).

Let ā = a1, . . . , an and b̄ be two sequences of elements of M . We define
the algebraic dimension, algdim(ā/b̄), as follows: If n = 1: algdim(a1/b̄)
is equal to 0 if a1 ∈ acl(b̄), and to 1 if a1 /∈ acl(b̄). In the general case:

algdim(a1, . . . , an/b̄) =
n∑

i=1

algdim(ai / b̄, a1, . . . , ai−1).

Notice that algdim(ā) depends on the order of ā.
Finally, let φ(x̄, ȳ) be a formula, and b̄ ∈ M of the same length as ȳ.

Then algdimφ(x̄, b̄) = max{algdim(ā/b̄) : M |= φ(ā, b̄)}.
Show that if T eliminates the ∃∞ quantifier, then the algebraic dimen-

sion is definable in the following sense: for every formula φ(x̄, ȳ) and
every n there is a formula ψ(ȳ) such that for all b̄ ∈ M : M |= ψ(b̄) iff
algdimφ(x̄, b̄) = n. (Hint: prove first for algdimφ(x̄, b̄) ≥ n)

M2. Let T be a theory in a countably infinite language L.

a. Assume that for every finite sub-language L′ ⊂ L, the theory T �L′
is ω-categorical. Prove that T eliminates ∃∞.

b. Show that if T is ω-categorical then for every finite sub-language
L′ ⊂ L, the theory T �L′ is ω-categorical.

c. Give an example showing that the converse to (b) is false.

M3. Let L consist of a single binary relation R. Let T1 be the theory of
triangle-free symmetric graphs, axiomatised as follows:

(∀x)¬Rxx (∀xy)(Rxy → Ryx) (∀xyz)¬(Rxy&Ryz&Rzx)

Let T2 be T1 plus the axiom:

(∀x0, . . . , xm−1, y0, . . . , yn−1)

(( ∧
j<k<n

¬Ryjyk ∧
∧
i<m

∧
j<n

xi 6= yj

)
−→

(∃z)
( ∧

i<m

¬Rzxi ∧
∧
j<n

Rzyj

))
for each n,m ∈ ω.

a. Prove that T2 has a model.
b. Prove that T2 has quantifier elimination.
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Set Theory

S1. Assume V = L. Let P be a perfect set of real numbers (that is, P
is closed and non-empty and has no isolated points). Prove that there
are x, y ∈ P with x 6= y such that x, y have the same L–rank; that is,
x, y ∈ L(α+ 1)\L(α) for some α. You may view real numbers concretely
as Dedekind cuts in the rationals.

S2. Let M be a countable transitive model of ZFC+CH. Let P be a poset
in M which is countable in M . Let G be P-generic over M . Prove that
in M [G], there is a nonprincipal ultrafilter U on ω such that: For every
f ∈M [G]∩ωω there exists g ∈M ∩ωω such that {n : f(n) = g(n)} ∈ U .

S3. Assume MA + ¬CH. Prove that if Aj, for j < ω, are arbitrary sets
and lim supj∈H Aj is uncountable for all infinite H ⊆ ω, then there is an
infinite H ⊆ ω for which

⋂
j∈H Aj is uncountable.

Here, lim supj∈H Aj is the collection of all x such that x ∈ Aj for
infinitely many j ∈ H.
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Answers

E1. Let T = {pn+1 → pn | n ∈ ω}. Let F be the family of finite and
cofinite subsets of ω. Define a map from F into S/≡ by mapping {n} to
[pn−1 ∧ ¬pn] (or to [¬p0] for n = 0). It is easy to see that this induces
a 1–1 map from F into S/≡, so we only need to check that the map is
onto. Let ϕ be any propositional formula, without loss of generality in
disjunctive normal form. Then each disjunct is a conjunction of pi’s and
¬pj’s; by T , we may assume that there is at most one pi and at most one
¬pj (namely, for the largest i and the least j occurring, if any). By T , we
have i < j. Again without loss of generality (by adding more disjuncts),
we may assume that the disjunct is of the form pi, ¬p0, or pi ∧ ¬pi+1.
Now the pre-image of the latter two are singletons, and the pre-image of
pi is the complement of the pre-image of ¬pi.

E2. ⇒: If M |= T and T is universal, then every substructure of M is a
model of T .
⇐: If M 6|= T , say M 6|= ϕ[a1, . . . , an], where ϕ is quantifier-free and

∀x1, . . . , xnϕ(x1, . . . , xn) ∈ T . Then 〈{a1, . . . , an}〉 6|= T .

E3. If a ≤ b, let [a, b] denote the usual interval, and if b ≤ a, let
[a, b] = [b, a]. Define a ∼ b iff [a, b] is countable. Then ∼ is an equiv-
alence relation, and the fact that there are no increasing or decreasing
ω1–sequences implies that each equivalence class is countable. Next, note
that the equivalence classes are densely ordered; that is, if a < c and
a 6∼ c, then there is a b with a < b < c and a 6∼ b and b 6∼ c Thus,
if there’s more than one class, we could pick out a subset S isomorphic
to the rationals, where S contains 0 or 1 elements from each equivalence
class. So, if there is no such subset, there is only one class, so A is
countable.
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C1. It easy to see that Q is 2-c.e. and that the 2-c.e. sets are closed
under ≤m. So it is enough to see that if A and B are c.e. then there
exists a computable function f : ω → ω such that f−1(Q) = A ∩ B. We
first claim that there exists a total computable g(x, y) such that for every
x, y ∈ ω

Wg(x,y) =

 ∅ if x /∈ A
{0, 1, 2, . . . , y} if x ∈ A and x /∈ B
ω if x ∈ A and x ∈ B

To see this define a partial computable function

ρ(x, y.u) =

 ↑ if x /∈ A
↓= 0 if x ∈ A and u ≤ y
↓= 0 if x ∈ A and x ∈ B

and use the S-n-m theorem to get ψg(x,y)(u) = ρ(x, y.u). By the uniform
version of the recursion theorem there exists a total computable f such
that Wf(x) = Wg(x,f(x)) for every x. But then x ∈ A ∩B iff f(x) ∈ Q.

C2. a. Note that any infinite c.e. set contains an infinite computable sub-
set so we may replace computable by c.e. in the definition of bi-immune.
Define the characteristic function of the set A by a finite-extension oracle
construction as χA =

⋃
s∈ω σs where σs ∈ 2<ω. Obtain σs by recursion on

s as follows: Set σ0 = 〈 〉. For s = 2e, check whether there is an element
x ≥ |σs| in We; if so, let σs+1 ⊃ σs with σs+1(x) = 1; else let σs+1 = σs.
This will ensure that if We is infinite then We ∩ A 6= ∅. Similarly ensure
We ∩ A 6= ∅ when defining σ2e+2.

b. Writing the Boolean combination X of c.e. sets in conjunctive nor-
mal form, we may assume that X = X0 ∪X1 ∪ · · · ∪Xn where each Xi is
the intersection of c.e. and co-c.e. sets. Since the c.e. sets, and the co-c.e.
sets, are closed under intersection, we may assume that each Xi is d.c.e.,
i.e., of the form Yi \Zi where Yi and Zi are c.e. By further manipulation,
we may assume that Y0 ⊇ Z0 ⊇ Y1 ⊇ · · · ⊇ Zn. Without loss of general-
ity, we may assume that all these sets (except possibly Zn) are infinite.
But then either X contains the infinite c.e. set Yn \Zn, or X contains the
infinite c.e. set Zn.

Alternative solution for b. Suppose A1, . . . , An are c.e. sets. Construct
a descending sequence of infinite c.e. sets, B1 ⊇ B2 ⊇ · · · ⊇ Bn such
that Bi ⊆ Ai or Bi ⊆ Ai for each i. This is possible since given Bi either
Bi ∩ Ai+1 is infinite and we can take Bi+1 = Bi ∩ Ai+1 or it is finite and
we can take Bi+1 = Bi \ Ai+1. But then it is easy to see that that Bn is
contained in or disjoint from any boolean combination of the Ai.
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C3. First note that closure under unions, for E or for E2, is expressed by:

∀Y, Z ∃X [Y ⊆ X ∧ Z ⊆ X ∧ ∀W [Y ⊆ W ∧ Z ⊆ W → X ⊆ W ]]

This is true in E , but false in E2. To see this, let A be a 2-c.e. set such
that A is not 2-c.e.; then A = B ∪C where B and C are c.e. sets, so that
B and C are both 2-c.e. An example of such an A is any universal 2-c.e.
set; e.g., A = {(n0, n1,m) : (n0,m) ∈ U ∧ (n1,m) /∈ U}, where U is a
universal c.e. set.
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S1. Let ρ(z) be the L–rank of z; so z ∈ L(ρ(z) + 1)\L(ρ(z)).
Let A,B be disjoint subsets of P \ Q such that sup(A) < inf(B) and

A and B are order-isomorphic to Q. Let f be some order-isomorphism
from A onto B. Fix a countable δ such that L(δ) contains A, B, f .

Note that sup(X) ∈ X ⊂ P whenever X ⊆ A or X ⊆ B; also,
sup(X) =

⋃
(X) if we view reals as lower Dedekind cuts in the ratio-

nals, so that sup(X) gets constructed as soon as X gets constructed.
Let A∗ be the set of x ∈ A\A such that x is a limit from the left (i.e.,

x = supX for some X ∈ [a]ω). Then |A∗| = 2ℵ0 = ℵ1. For x ∈ A∗, let
x̂ = {a ∈ A : a < x}; then x = sup(x̂). Note that ρ(x) = ρ(x̂) provided
ρ(x) > δ. Likewise define B∗ and ŷ for y ∈ B∗.

Now, fix any α > δ such that α = ρ(x) for some x ∈ A∗. Let y =
sup(f(A)). Then y ∈ B∗ and ŷ = f(A), and ρ(y) = ρ(ŷ) = ρ(A) = ρ(x).

S2. In M [G], we still have CH, so list ωω as {fα : α < ω1}. Now,
inductively choose xα and Hα for α < ω1 so that:

1. Hα is an infinite subset of ω.
2. gα ∈ ωω ∩M .
3. fα(j) = gα(j) for all j ∈ Hα+1.
4. ξ < α → Hα ⊆∗ Hξ.

Assuming this can be done, we choose U ⊇ {Hα : α < ω1}. To do the
construction: H0 can be ω, and the Hα for limit α are no problem, since
(3) says nothing there. Given Hα, we choose gα and Hα+1 ⊆ Hα using
the following argument in M :

Back in M , we have P–names Ḣ and ḟ such that 1 
 Ḣ ∈ [ω]ω and

1 
 ḟ ∈ ωω. Then, using the fact thet P is countable, we can, in ω steps,
construct a g ∈ ωω such that 1 
 |{j ∈ Ḣ : g(j) = ḟ(j)}| = ℵ0.

S3. Just in ZFC: inductively choose xα and Hα for α < ω1 so that:

1. Hα is an infinite subset of ω.
2. xα ∈ Aj for all j ∈ Hα+1.
3. ξ < α → Hα ⊆∗ Hξ & xα 6= xξ.

Given Hα and xξ for all ξ < α, we choose xα and Hα+1 ⊆ Hα using the
fact that lim supj∈Hα

Aj is uncountable. H0 can be ω, and the Hα for
limit α are no problem, since (2) says nothing there.

Now, using MA + ¬CH (or just p > ℵ1 or t > ℵ1), choose an infinite
H such that {α : H ⊆ Hα} is uncountable.
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M1. We show by induction on n and the length of x̄ = x1, . . . , xm that
algdimφ(x̄; b̄) ≥ n is definable.
– If n = 0 then this is always true.
– If n > 0 and m = 0, this is always false.
– If m,n > 0 then: algdimφ(x̄; b̄) ≥ n holds if and only if

∃x1“algdimφ(x2, . . . , xm;x1, b̄) ≥ n”,

or:
∃∞x1“algdimφ(x2, . . . , xm;x1, b̄) ≥ n− 1”.

Indeed, one direction is clear, while for the other, we observe that if
the second holds then there exists a1 /∈ acl(b̄) such that

algdimφ(x2, . . . , xm; a1, b̄) ≥ n− 1 ,

whereby algdimφ(x1, . . . , xm; b̄) ≥ n.
As “algdimφ(x̄; b̄) ≥ n” is definable, so is “algdimφ(x̄; b̄) = n”.

M2.
a. Assume first that T is ω-categorical, and φ(x, ȳ) is a formula, |ȳ| = n.

For any M |= T and b̄ ∈ Mn, whether or not φ(M, b̄) is infinite or not
depends solely on tp(b̄). Let:

X = {tp(b̄) : M |= T, b̄ ∈Mn, |φ(M, b̄)| ≥ ω} ⊆ Sn(T ).

By Ryll-Nardzewski’s theorem, the space of types Sn(T ) is a finite discrete
topological space, whereby X is clopen. Since X is clopen there exists
a formula ψ(ȳ) such that X = [ψ] = {p ∈ Sn(T ) : ψ ∈ p}. We conclude
that ψ(ȳ) is the formula (∃∞x)φ(x, ȳ).

Now T needs not be ω-categorical, so let L′ be the set of symbols in
φ, and let T ′ = T �L′ . Then Every model of T is a model of T ′ and T ′ is
ω-categorical, so we reduce to the previous case.

b. Use Ryll-Nardzewski: T is ω-categorical if and only if Sn(T ) is finite
for all n.

c. L = {Pn : n < ω}, each Pn is a unary predicate symbol. T says that
every conjunction of the form

∧
n<mQn(x) where each Qn is either Pn or

¬Pn has infinitely many solutions.
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M3.
a. T1 is the theory of a triangle-free graph. To build a model of T2, start

with M0 being a single point with no edges. Assume we have Mn |= T1,
and build a structure Mn+1 ⊇Mn: its underlying set is |Mn|∪{cā,b̄ : ā, b̄ ∈
M}. If ā, b̄ ∈Mn satisfy the antecedent of the additional axiom then cā,b̄

has an edge with each bi an no other; otherwise, cā,b̄ has no edges. Verify
that Mn+1 is also a triangle-free graph.
M =

⋃
nMn is a model of T2.

b. It suffices to show that if M,N |= T2 have a common substructure
A, ā ∈ A, and φ(z, w̄) is a conjunction of atomic formulas and their
negations, then:

M |= ∃z φ(z, ā) ⇐⇒ N |= ∃z φ(z, ā).

Indeed, φ is therefore of the form
∧

i<m ¬Rzxi ∧
∧

j<nRzyj, where x̄ and

ȳ are sub-tuples of w̄. Let b̄ and c̄ be the corresponding sub-tuples of ā.
Assume now that M |= ∃z φ(z, ā), i.e., that M |= (∃z)

( ∧
i<m ¬Rzbi ∧∧

j<nRzcj
)
. As M is triangle-free we must have:

M |=
∧

j<k<n

¬Rcjck ∧
∧
i<m

∧
j<n

bi 6= cj.

Then the same holds in A and therefore in N . Since N |= T2: N |=
(∃z)

( ∧
i<m ¬Rzbi ∧

∧
j<nRzcj

)
, whereby N |= ∃z φ(z, ā).
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