Qualifying Exam
Logic
January 2006
Instructions:

If you signed up for Computability Theory, do two E and two C problems.
If you signed up for Model Theory, do two E and two M problems.

If you think that a problem has been stated incorrectly, mention this
to the proctor and indicate your interpretation in your solution. In such
cases, do not interpret the problem in such a way that it becomes trivial.

E1. Prove that a subset E of w is first-order definable in (w; <) iff E is
either finite or cofinite. Here, “definable” means that there is a formula
¢ with just  free such that ' = {n € w: (w; <) = ¢[n]}.

E2. Let £ be a non-zero ordinal.

a. Prove that there are ordinals o« < 3 such that a4+ 3 =08+ a+&.
b. Find the least possible 3 such that there is an o < 3 satisfying
at+fB=F+a+¢§.

E3. Prove that the theory of atomless boolean algebras admits quantifier
elimination. Here, £ = {V, A, /,0,1} (where ' denotes complement). You
have to show that for each formula ¢(z1, ..., z,) of L, there is a quantifier-
free formula ¢ (xy,...,z,) of £ such that ¢ and v are equivalent in all
atomless boolean algebras.



Computability Theory

C1. Let Dom(A) = {x | W, C A}. Show that if A is productive then
so is Dom(A). Note. A set P is productive iff there is a p.c. function v
such that for all z: if W, C P then ¢(x) |€ P — W,.

C2. Show that the m-degrees form a distributive upper semilattice, i.e.,
whenever A <,,, B @ C' then there are sets Ag <,,, B and A; <,,, C such
that A =m AO D Al.

C3. Call an infinite set A = {ap < a1 < ...} retraceable if there is a
p.c. function ¢ such that ¥ (ag) = ag and ¥(a;y1) = a; for all i € w. Show
that if A and A are both retraceable then A is computable. Hint. Start
by showing that A @ A is retraceable.



Model Theory

M1. Let L consist of a single unary function symbol f, and let T" say that
f is a bijection admitting infinitely many cycles of every finite length.

Show that T is complete and w-stable. Classify its 1-types over a
model and calculate their Morley rank. Describe the prime model and
the countable saturated model of 7.

M2. Fix a complete theory 7. Say that a formula ¢(z,y) has the in-
dependence property if for every n, every model M = T contains b; for
i < n and a, for o € {0,1}" such that for each i,0, M |= é(a,,b;) iff
o; = 1. Here, @, is a tuple of the length of Z and b; is a tuple of the length
of y. Then, T has the independence property if some formula does.
Assume that the complete theory T" does NOT have the independence
property, and let (a; : i < w) be an indiscernible sequence in some model
MET.
a. Let ¢(x,b) be a formula with parameters in b € M. Show that
the sequence of truth values of ¢(a;, b) is eventually constant.
b. Let Avg(a; : i < w, M) consist of all formulae ¢(x, b) as in (a) such

that ¢(a;,b) is eventually true. Show that Avg(a; :i < w, M) is a
1-type over M.

M3. Let T be a complete theory in a countable language, M a model
of T, and a,b € M. Let p(z,y) = tp(a,b), q(y) = tp(b). Say that a
semi-isolates b if there is a formula ¢(z,y) € p such that ¢(a,y) F q(y).
Show that the following are equivalent for types q,r € S(T):
1. Every model of T realizing r also realizes ¢.
2. There is a model M of T', and a,b € M realizing r and ¢, respec-
tively, such that a semi-isolates .



Answers

E1. Finite and cofinite sets are definable (without parameters) because
every element of w is definable in (w; <). Now, suppose that E is neither
finite nor cofinite and F = {n € w : (w;<) | ¢[n]}. Then (w; <) | ¥,
where 1 is Va3y > x [p(y) A —¢(S(y))]. Note that S(y), the successor of
y, is definable in (w; <).

Fix 2( such that A = (w; <) and A % (w; <). Then 2 consists of an w
at the beginning, followed by some blocks of order type Z.

Since 2 = 9, fix a € A such that a ¢ w and A E p(a) A ~¢(S(a)).
But this is a contradiction, since there is an automorphism of 2 moving
a to S(a).

E2. Fix p with w* < € < w*™ Let o = w*™ and let 3 = Wttt + €.
Then a+ 3 = B+ a+ & = whtl - 24 & Now, suppose a < 8 < whtl £,
We show that «, 8 cannot work.

First, say 3 = w*tt 4+ 1, where n < £&. If a < w*™' then o + 3 = 3 <
B+a+& Ifa=wt +( with ( <7, then a + 3 = w*™ -2+ 7 and
B+a+&=wrt.24(+E>a+ 8.

So, a < B < wttl, If B < wht, thena+ 3 < LS B+a+€, so
wh < B < whrtt Then, if @ < w*, we have a+ 8= 3 < B+ o+ £. Thus,
wh < a < fB<wtth

Say # =w’-n+nand a =w"-m+ (, where m,n # 0 and n,( < wh.
Then o+ =wh-(m+n)+n<w'-(m+n)+{<F+a+&.

E3. By Marker, Cor. 3.1.6, it is sufficient to show that for all quantifier-
free formulas (¥, w), all atomless boolean algebras M, N having a com-
mon subalgebra A, and all @ € A: If there is a b € M such that
M = ¢(d,b), then there is a ¢ € N such that N = ¢(d,c). WLOG,
A is the subalgebra generated by d, and hence finite. By the Downward
Léwenheim-Skolem-Tarski Theorem, WLOG |M| = |N| = ¥,. But then
it’s trivial, since there is an isomorphism from M onto N which is the
identity on A.

C1. Let A be productive via 9, set W) = W; U {¢(i)} where W; =
Ueew, We. Now if W, € Dom(A) then for all e € W,, we have W, C A
and so W; € A. Thus ¢(i) € A—W;, so W) € A and ¢(x) € Dom(A).
On the other hand, if ¢(z) € W, then Wy, € W;, a contradiction.

C2. Without loss of generality assume that A (and so B and (') is neither
empty nor all of w. Let A <,, B® C via f, set Ay = f~1(B & () and
A=f10eC).



C3. See Odifreddi I, page 240. Note that by changing the retrace function
1 we may assume that it has the properties:
(1) for any x if ¢(z) |=y, then ¢(y) | and either y < z or y = ag
(2) for any x if ¢(x) |, then ¢"(z) = ay for some n.

The idea is simply to refuse for say ¥*(z) to converge until finitely
many iterates of ¢ converge and descend down to ay.

To prove the Hint, let 1y be the retrace function for A and ; the
retrace function for A. Let (x,0) = 2r and (z,1) = 22 + 1. Define the
retrace function 1) on A @ A as follows. Given (z,4) if 1;(z) |= y and
y < x — 1 then put ¢(x,i) = (r — 1,1 — i), i.e., switch to the other side.
If y =2 — 1, then put ¢ (z,i) = (x — 1,7). Note that for any = exactly
one of the (z,0), (x,1) is correct, i.e., in the set A @ A. It is easy to see
that if (z,4) is correct, then 1(z,4) converges and is correct. By a finite
modification we can have it end on the minimal element of the set.

Now we use ¥ to prove that the set A is computable. Given any =
must converge on the correct one of (x,0) and (x, 1) but may or may not
converge on the other.

Case 1. For all but finitely many x, 1 only converges on one of the
two.

Then it must only converge on the correct one and so we can easily
compute A by going beyond the exceptions and waiting for the correct
side to converge.

Case 2. There are infinitely many x such that i) converges on both
(x,0) and (z,1).

When it does there are four possible outcomes, either they crisscross
or both stay on the same side or they both move to the same side. If they
move to the same side (the last two squares in the figure) then the node
they move to is correct since at least one of the two inputs was correct.
Hence, if they are infinitely many squares that look like either of the last
two in the figure we can easily compute A.

Lastly, we assume that for all but finitely many x if ¢ converges on
both sides then it either criss-crosses or stays on the same side, i.e, the
first two squares in the diagram. In this case, with finitely many excep-
tions, ¥ always converges. We get two isolated branches one of which is
always correct and the other always wrong. Since they are isolated we

can compute them and hence A.
[
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M1. Add a predicate symbol P, for each n > 0 meaning “x belongs
to a cycle of length n”. Then T eliminates quantifiers in this expanded
language. Thus a 1-type over a model is either realized (rank 0) in the
model, or is “x belongs to an n-cycle not in the model” (rank 1) or “z
belongs to a Z-chain not in the model” (rank 1).

Prime model: w many cycles of each finite length. Saturated model:
same plus w many Z-chains.

M2. Assume for a contradiction that there is a formula ¢(x,b) € L(M)
such that the sequence of truth values of ¢(a;, b) never stabilizes. Then
for every n, and every o € {T,F}", we can find iy < i3 < ... < i1
such that ¢(a;;,b) = o; for all j < n. Embedding M elementarily in a
monster model for 7', there is an automorphism f sending a;,, ...,a;, , to
ag, ..., Gp_1, and let b, = f(b).

Then for all ¢ € {T,F}" and i < n: ¢(a;,b,) = 0;. As this can be
done for all n < w, ¢ has the independence property.

Assume ¢(x,b),¢(x,¢) € Avg(a, M). Then both are true from some
point onwards, whereby their conjunction is eventually true, so ¢(z,b) A
Y(z,¢) € Avg(a, M). Thus Avg(a, M) is closed under finite conjunction.
Since every single formula in Avg(a, M) is consistent, Avg(a, M) is con-
sistent. By the first item, every formula ¢(x,b) € L(M) or its negation
is there, so it is a complete 1-type.

M3. 2 — 1: Let ¢(z,y) witness this. Then r(z) - Jyop(x, y).
1 — 2 Let M =T, a€ M realism r. Let T(a) = Th(M,a). Then
q defines a closed subset X C S(T'(a))(= S(a)). If (2) fails then X has

empty interior, i.e., is nowhere dense, and can be omitted in a model of
T(a), so (1) fails as well.



