Qualifying Exam Logic August 2006

Instructions:

If you signed up for Model Theory, do two E and two M problems.

If you think that a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

E1. Let $\mathcal{L} = \{<\}$.

- a. Prove that $(\omega; <) \models \varphi$ iff $(\omega + \omega; <) \models \varphi$ whenever φ is a Σ_2 sentence of \mathcal{L} .
- b. Write a Σ_3 sentence of \mathcal{L} which is true in $(\omega + \omega; <)$ and false in $(\omega; <)$.

 Σ_2 sentences are of the form $\exists \vec{x} \, \forall \vec{y} \, \psi(\vec{x}, \vec{y})$, and Σ_3 sentences are of the form $\exists \vec{x} \, \forall \vec{y} \, \exists \vec{z} \, \psi(\vec{x}, \vec{y}, \vec{z})$, where ψ has no quantifiers and $\vec{x}, \vec{y}, \vec{z}$ denote finite tuples of variables.

- **E2.** Let A be any set and $f: A \to A$ any function such that $f(x) \neq x$ for all $x \in A$. Prove that one can partition A into three sets $A = B \cup C \cup D$ such that $f(B) \cap B = \emptyset$ and $f(C) \cap C = \emptyset$ and $f(D) \cap D = \emptyset$.
- **E3.** A theory is *quasifinitely axiomatizable* if it can be axiomatized by the usual set of sentences (just using "=") stating that the model is infinite, plus a finite number of other sentences. Characterize all quasifinitely axiomatizable complete theories of a single equivalence relation.

Model Theory

- **M1.** If \mathcal{L} is countable and Σ is a complete theory in \mathcal{L} with infinite models, let $n(\Sigma)$ be the number of non-isomorphic countable models of Σ ; so $1 \leq n(\Sigma) \leq 2^{\aleph_0}$.
- If $\mathcal{L}' \subseteq \mathcal{L}$, let $\Sigma \upharpoonright \mathcal{L}'$ be the set of all sentences of Σ which only use symbols of \mathcal{L}' .
 - a. Give an example where $\aleph_0 > n(\Sigma \upharpoonright \mathcal{L}') > n(\Sigma)$.
 - b. Prove that if $n(\Sigma) = 1$ then $n(\Sigma \upharpoonright \mathcal{L}') = 1$.
- M2. Let \mathfrak{A} and \mathfrak{B} be infinite structures for a countable language \mathcal{L} . Then $\mathfrak{A} \times \mathfrak{B}$ is also a structure for \mathcal{L} , with all relations and functions evaluated coordinatewise. Now suppose that \mathfrak{A} and \mathfrak{B} are models for the same \aleph_1 -categorical theory Σ and \mathfrak{C} is elementarily equivalent to $\mathfrak{A} \times \mathfrak{B}$. Assume that a product of two models of Σ is also a model of Σ . Must \mathfrak{C} then be isomorphic to some product, $\mathfrak{A}' \times \mathfrak{B}'$? Give either a proof or a counterexample.
- M3. Characterize all \aleph_0 -categorical theories of a single unary 1–1 function.

Answers

E1. For (b), your sentence can say "there is a limit ordinal":

$$\exists w \exists z \forall x \exists y \left[z < w \ \land \ \left[x < w \rightarrow x < y < w \right] \right]$$

For (a), note that if θ is a Π_1 property true of some \vec{a} in $\omega + \omega$, then θ is also true (in ω and in $\omega + \omega$) of some \vec{b} coming from ω . In particular, if \vec{a} is $(p_1, \ldots, p_m, \omega + q_1, \ldots, \omega + q_n)$, where $p_1, \ldots, p_m, q_1, \ldots, q_n < \omega$, then \vec{b} can be $(p_1, \ldots, p_m, K + q_1, \ldots, K + q_n)$, for a large enough finite K.

- **E2.** View A as the set of nodes of a graph, where there is an edge between x and y iff f(x) = y or f(y) = x. Now, you want to prove that this graph is 3-colorable. By the Compactness Theorem, it's enough to prove that every finite subgraph is 3-colorable, and this can be done by induction on the size, n, of the subgraph. Assuming that it works for sizes < n, choose a note z with at most two other nodes connected to it, color the other n-1 nodes, and then assign z a color different from the nodes connected to it. There is such a node z because the subgraph with n nodes can have at most n edges (since f is a function).
- E3. There are two cases: Either there is an infinite equivalence class; then, by quasifinite axiomatizability, this equivalence class must be cofinite, and on the finite complement, any configuration is quasifinitely axiomatizable. Or there is no infinite equivalence class; then by quasifinite axiomatizability, there must be a fixed bound on the size of all equivalence classes, and only one of these sizes can occur infinitely often, so the model is the union of a finite set with arbitrary classes plus infinitely many classes of a fixed finite size.
- M1. For (b), use the fact that $n(\Sigma) = 1$ iff there are finitely many k-types for each k. For (a), let $\mathcal{L}' = \{<\} \cup \{c_j : j \in \mathbb{Z}\}$, and let $\Sigma \upharpoonright \mathcal{L}'$ say that $\cdots c_{-2} < c_{-1} < c_0 < c_1 < c_2 < \cdots$ and that < is a dense total order without endpoints. So, this is like Ehrenfeucht's example at both ends, and $n(\Sigma \upharpoonright \mathcal{L}') = 3 \cdot 3 = 9$. Let $\mathcal{L} = \mathcal{L}' \cup \{f\}$, where f is a unary function symbol, and let Σ say that f is an order-reversing bijection, with f(f(x)) = x and $f(c_j) = c_{-j}$ for each j. This forces both ends to be the same, so $n(\Sigma) = 3$.
- **M2.** Let Σ be the axioms for torsion-free divisible abelian groups. Here, we can view models of Σ as vector spaces over \mathbb{Q} , and a product of two models must have dimension at least 2, so the model of dimension 1 cannot be a product.

M3. Suppose first that there is some element x such that $f^n(x) \neq x$ for all n > 0. Then any 2-type containing the formulas $f^n(x) \neq f^m(x)$ for any $n, m \geq 0$ cannot be isolated (and some such 2-type is consistent with the theory), contradicting Ryll-Nardzewski. A similar argument using Ryll-Nardzewski shows that in fact there is a fixed bound n_0 such that for any element x, $f^n(x) = x$ for some n with $0 < n \leq n_0$. These are the only limitations, i.e., any theory specifying for a finite number of cycle sizes that there are such and such finite number, or infinitely many, cycles of that size is \aleph_0 -categorical.