Qualifying Exam
Logic
January 2007
Instructions:

If you signed up for Model Theory, do two E and two M problems.
If you signed up for Set Theory, do two E and two S problems.

If you think that a problem has been stated incorrectly, mention this
to the proctor and indicate your interpretation in your solution. In such
cases, do not interpret the problem in such a way that it becomes trivial.

E1. PA denotes Peano Arithmetic. If 20 = PA, let pr(2() be the set of
all a € A such that 2 = “a is prime”. Prove:
a. For any 20 = PA, |pr(20)] = ||
b. For any 2 = PA and S C pr(2), there is a B = A with a b € B
such that for all a € pr(A): B =a |biff a € S.
c. If ¥ is a complete extension of PA, then ¥ has exactly 2% non-
isomorphic countable models.

E2. If (X, <) is totally ordered set, let I(X, <) be the set of strictly
increasing functions f : X — X (that is f(z) < f(y) whenever x < y).
a. Prove that |I(R, <)| = 2% (where < is the usual order).
b. Give an example of a total order (X, <) with |X| = 2% and
1I(X, <) =22,

E3. Work in ZF (without AC), but assume that for every non-empty set
X, there is a function e : X x X — X which makes X a group. Prove
that AC holds. Hint. To well-order X, get a group operation on X Uk
for a suitably large k.



Model Theory

M1. Let 2 be a countable proper elementary extension of (w; +, -, <).
Call E C A nice iff E is an initial segment of A and E is closed under
+ and - (so £ is a sub-model of A, but not necessarily elementary). For
example, w and A are nice subsets of A. Prove:

a. If a € A, then there is a nice £ C A such that a € ' # A.
b. There are 2% nice subsets of A.

M2. Let sat,(2,B) abbreviate the statement that 2 < B and every
n—type over any countable subset of A is realized in B. Then:

a. Prove that sat,, (2, B) and sat,, (8, €) implies sat,, (A, €).

b. Give an example where sat;(2(,B) is true and sats(2, B) is false.

M3. Let R = (R;+,+,<). Note that this structure is o-minimal; that
is, every subset of R which is definable in fR is a finite union of points
and intervals. Here, “definable” means definable by a formula, using a
finite list of parameters from R; intervals are of the form (a,b), where
a,b € RU{+£oo}.

Now, let f : R — R be definable in fR. Prove that f is piecewise
monotonic and piecewise continuous; that is, there are finitely many open
intervals which cover all of R except for finitely many points such that
f is monotonic (strictly increasing, strictly decreasing, or constant) and
continuous on each interval.



Set Theory

S1. Assume V = L. Prove that for each n < w, there are ordinals
ap < a1 < ---a, < w; such that L(a;) < L(aqq) for each ¢ < n, but
there is no 8 > a,, such that L(a,,) < L(f).

S2. Assume MA + —CH. Let S be a dense set of real numbers with
|S| = Ny. For z € S, let C,, € S\{z} be a countable set which forms

a simple sequence converging to x. Prove that there is an uncountable
T C S such that TNC, = 0 for each z € T.

S3. Let M be a countable transitive model for ZFC, In M, let P be the
partial order consisting of all finite partial functions from Q to Q which
are both 1-1 and order-preserving. Let G be P—generic over M. In M[G],
let f =|JG. Note that M and M[G] have the same Q, but M[G] has
more reals (which you may view as Dedekind cuts in Q). Prove that the
following hold in M|G]:

a. f is an order-preserving bijection from Q onto Q, and hence de-

fines a continuous bijection f from R onto R.
b. If r is a real in M, then f is not differentiable at r.



Answers

E1. For (a): Working in PA, one can define, by some formula ¢(z,y),
the function which lists the primes in increasing order. If f is the the
function in A defined by ¢, then f is a bijection from A onto pr(2l).

For (b): Let B |= 3, where X is the elementary diagram of 2( (written
using L U {¢, : a € A}), together with the sentences ¢, | d for a € S and
co 1 d for a € pr(A)\S.

For (c): If P is the set of all standard primes, S C P, and 2 = PA,
say that S is coded by A iff for some b€ A, S={pe P :AEp]|b}.
Then each S is coded by some countable 2 = ¥, and each countable
can code only countably many sets, so there must be 2% nonisomorphic
models.

E2. For (a): The maps z — = + ¢, for ¢ € R, show that |I(R, <)| > 2.
To prove |I(R,<)| < 2%: For f € I(R,<) and z € R, let fF(z) =
lim; .., f(t) and let f~(x) =limy_.,_ f(t). Let J(f) ={z e R: f~(z) #
fH(z)}. Note that J(f) is countable, and that each f € I(R,<) is
determined by the set J(f) and the function f [ (QU J(f)).

For (b): Let X = R x R, ordered lexicographically. So, X consists of
R blocks, {a} x R, of order type R. There are 2% order-automorphisms
of X because for each S C R, there is an order-automorphisms f such

that for all a € R: f({a} x R) = {a} x R and f(a,0) = (a,0) < a € S.

E3. To well-order X: Let k = R(X) (the Hartogs N function); so there is
no injection from x into X. WLOG, X contains no ordinals, so skNX = ().
Let e be a group operation on kU X.

First note that Vz € X 3a € k [z € k|, because the map a — za is
an injection, and the range of this injection cannot be contained in X.

Thus, for each z € X, there are o, 3 € s such that za = 3, or z = Ba L.
Let W = {(a,0) € k x 5 : fa~t € X}. Then W maps onto X (by the
map (a, 3) — Ba~!), and W can be well-ordered (by lexicographic order),
so X can be well-ordered.



M1. On A\w, define z ~ y iff there is an n € w such that =" > y
and y" > x. Observe that ~ is an equivalence relation and the set of
equivalence classes of A\w is densely ordered (and hence isomorphic to
Q). Let [a] denote the equivalence class of a.

For (a), let £ = wUJ{[b] : b € A\w & b < a}. For (b), note that
every Dedekind cut in A/~ defines a nice subset of A, so that there is a
nice subset of A for each real number.

M2. For (a): Observe that realizing types is is equivalent to realizing
consistent sets of formulas of £4. We have 2 5B < €. Let 3(Z,9) be a
consistent set of formulas over some countable F C A, where ¥ denotes an
m~—tuple and i denotes an n—tuple. So, every finite subset of X is realized
in 2A. We must show that 3(Z, i) is realized in €. For p(Z, %) € X(Z, ), let
¢'(Z) be FYp(Z,7), and let ¥’ = {¢' : ¢ € ¥}. Then ¥'(¥) is a consistent
set of formulas over E in m variables, so is realized by some beB (using
sat,, (2A,B)). Now, replacing Z by b, we get ¥ y) = E(l;, y). WLOG,
the original 3 was closed under A, which implies that every finite subset
of ¥* is realized in B; thus X* is a consistent set of formulas over the
countable EU{b}. Then ¥* is realized by some & € C' (using sat, (B, €)),
and (b, @) realizes 2.

For (b), let 2 be the field of algebraic numbers and let B be an al-
gebraically closed field of transcendence degree 1. Then B omits the
two-type (over (}) consisting of all p(z,y) # 0 such that p is a non-trivial
polynomial over Q.

M3. See Lou van den Dries, Tame topology and o-minimal structures,
Chapter 3, Theorem 1.2, for a proof.



S1. We get ag < a3 < -+ -y, < wy such that
L(ao) < L{eu) < -+ < L(an) < Lw:) (%)

by the Lowenheim—Skolem—Tarski Theorem. Now, let «, be the least
ordinal such that L(«,) is a model for ZF — P and such that there exist
ap < ap < a1 < satisfying

L) < L{an) < -+ < L(aw) (1)

there is such an «,, < wy by (*). Let ¢ be the sentence which asserts
the existence of a sequence of n + 1 ordinals oy < a1 < - a1 <
satisfying (f). Then L(w,) = —(f) (because «,, is least), while § > «,
and L(() = ZF —P implies that L(3) = (), so L(a,) A L(B).

The “ZF — P” is included just to ensure that elementary model theory
is absolute for the transitive models in question.

S2. Let P be the set of all finite p C S such that p N C, = @ for each
x € p. Define ¢ < p iff ¢ O p. Note that ) =1 € P and {z} € P for each
x € S. If Pis cce, then by MA(R,), there are distinct z,, for a < wy,
so that the forcing conditions {x,} are all compatible, and we can let
T={z,:a<uw}.

Now, suppose that A is an uncountable antichain in P. We may assume
that A forms a A system, and then, subtracting off the root, we may
assume that the elements of A are pairwise disjoint. For p € A, let
C(p) = U{C.: : = € p}. We may then list a subset of A as {p, : @ < wi}
so that p, N C(pe) = 0 whenever £ < a. Then pe N C(p,) # § whenever
§ < «, since p, L pe. Since the p, are disjoint, we may find open
U,V CRsuch that UNV =0, and pe C U for uncountably many & and
Po C V for uncountably many «. Then, fix any « such that p, C V and
pe C U for infinitely many & < a. Since pe N C(p,) # O for these £, we
have U N C(p,) is infinite, which is impossible, since the C, for z € p,
all converge to points in p,, which is disjoint from U.

S3. For (a): f is a union of a compatible family of order-preserving
injections, so f is an order-preserving injection. {p : a € dom(p)} and
{p : a € ran(p)} are dense and in M for each a € Q, so that dom(f) =
ran(f) = Q. R

For (b), suppose that f/'(r) < n, for some n € w. Then there are
abeQWltha<r<bsuchthatwhenevera<c<7"<d<b

~

f(d)= J(r) < n(d—r), and f(r) = J(¢) < n(r—c), so that f(d)— f(c) <
n(d —c). But

{peP:3Je,dedom(p) a<c<r<d<b& p(d)—p(c)>n(d—-c)}

is in M (since r € M) and is dense, a contradiction.



