
Qualifying Exam
Logic

January 2007

Instructions:

If you signed up for Model Theory, do two E and two M problems.
If you signed up for Set Theory, do two E and two S problems.

If you think that a problem has been stated incorrectly, mention this
to the proctor and indicate your interpretation in your solution. In such
cases, do not interpret the problem in such a way that it becomes trivial.

E1. PA denotes Peano Arithmetic. If A |= PA, let pr(A) be the set of
all a ∈ A such that A |= “a is prime”. Prove:

a. For any A |= PA, |pr(A)| = |A|.
b. For any A |= PA and S ⊆ pr(A), there is a B < A with a b ∈ B

such that for all a ∈ pr(A): B |= a | b iff a ∈ S.
c. If Σ is a complete extension of PA, then Σ has exactly 2ℵ0 non-

isomorphic countable models.

E2. If (X, <) is totally ordered set, let I(X, <) be the set of strictly
increasing functions f : X → X (that is f(x) < f(y) whenever x < y).

a. Prove that |I(R, <)| = 2ℵ0 (where < is the usual order).
b. Give an example of a total order (X, <) with |X| = 2ℵ0 and

|I(X, <)| = 22ℵ0 .

E3. Work in ZF (without AC), but assume that for every non-empty set
X, there is a function • : X ×X → X which makes X a group. Prove
that AC holds. Hint. To well-order X, get a group operation on X ∪ κ
for a suitably large κ.
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Model Theory

M1. Let A be a countable proper elementary extension of (ω; +, ·, <).
Call E ⊆ A nice iff E is an initial segment of A and E is closed under
+ and · (so E is a sub-model of A, but not necessarily elementary). For
example, ω and A are nice subsets of A. Prove:

a. If a ∈ A, then there is a nice E ⊆ A such that a ∈ E 6= A.
b. There are 2ℵ0 nice subsets of A.

M2. Let satn(A, B) abbreviate the statement that A 4 B and every
n–type over any countable subset of A is realized in B. Then:

a. Prove that satm(A, B) and satn(B, C) implies satm+n(A, C).
b. Give an example where sat1(A, B) is true and sat2(A, B) is false.

M3. Let R = (R; +, ·, <). Note that this structure is o-minimal; that
is, every subset of R which is definable in R is a finite union of points
and intervals. Here, “definable” means definable by a formula, using a
finite list of parameters from R; intervals are of the form (a, b), where
a, b ∈ R ∪ {±∞}.

Now, let f : R → R be definable in R. Prove that f is piecewise
monotonic and piecewise continuous; that is, there are finitely many open
intervals which cover all of R except for finitely many points such that
f is monotonic (strictly increasing, strictly decreasing, or constant) and
continuous on each interval.
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Set Theory

S1. Assume V = L. Prove that for each n < ω, there are ordinals
α0 < α1 < · · ·αn < ω1 such that L(αi) ≺ L(αi+1) for each i < n, but
there is no β > αn such that L(αn) ≺ L(β).

S2. Assume MA + ¬CH. Let S be a dense set of real numbers with
|S| = ℵ1. For x ∈ S, let Cx ⊆ S\{x} be a countable set which forms
a simple sequence converging to x. Prove that there is an uncountable
T ⊆ S such that T ∩ Cx = ∅ for each x ∈ T .

S3. Let M be a countable transitive model for ZFC, In M , let P be the
partial order consisting of all finite partial functions from Q to Q which
are both 1-1 and order-preserving. Let G be P–generic over M . In M [G],
let f =

⋃
G. Note that M and M [G] have the same Q, but M [G] has

more reals (which you may view as Dedekind cuts in Q). Prove that the
following hold in M [G]:

a. f is an order-preserving bijection from Q onto Q, and hence de-

fines a continuous bijection f̂ from R onto R.

b. If r is a real in M , then f̂ is not differentiable at r.
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Answers

E1. For (a): Working in PA, one can define, by some formula ϕ(x, y),
the function which lists the primes in increasing order. If f is the the
function in A defined by ϕ, then f is a bijection from A onto pr(A).

For (b): Let B |= Σ, where Σ is the elementary diagram of A (written
using L ∪ {ca : a ∈ A}), together with the sentences ca | d for a ∈ S and
ca - d for a ∈ pr(A)\S.

For (c): If P is the set of all standard primes, S ⊆ P , and A |= PA,
say that S is coded by A iff for some b ∈ A, S = {p ∈ P : A |= p | b}.
Then each S is coded by some countable A |= Σ, and each countable A
can code only countably many sets, so there must be 2ℵ0 nonisomorphic
models.

E2. For (a): The maps x 7→ x + c, for c ∈ R, show that |I(R, <)| ≥ 2ℵ0 .
To prove |I(R, <)| ≤ 2ℵ0 : For f ∈ I(R, <) and x ∈ R, let f+(x) =
limt→x+ f(t) and let f−(x) = limt→x− f(t). Let J(f) = {x ∈ R : f−(x) 6=
f+(x)}. Note that J(f) is countable, and that each f ∈ I(R, <) is
determined by the set J(f) and the function f � (Q ∪ J(f)).

For (b): Let X = R × R, ordered lexicographically. So, X consists of

R blocks, {a}×R, of order type R. There are 22ℵ0 order-automorphisms
of X because for each S ⊆ R, there is an order-automorphisms f such
that for all a ∈ R: f({a} × R) = {a} × R and f(a, 0) = (a, 0) ↔ a ∈ S.

E3. To well-order X: Let κ = ℵ(X) (the Hartogs ℵ function); so there is
no injection from κ into X. WLOG, X contains no ordinals, so κ∩X = ∅.
Let • be a group operation on κ ∪X.

First note that ∀z ∈ X ∃α ∈ κ [zα ∈ κ], because the map α 7→ zα is
an injection, and the range of this injection cannot be contained in X.

Thus, for each z ∈ X, there are α, β ∈ κ such that zα = β, or z = βα−1.
Let W = {(α, β) ∈ κ × κ : βα−1 ∈ X}. Then W maps onto X (by the
map (α, β) 7→ βα−1), and W can be well-ordered (by lexicographic order),
so X can be well-ordered.
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M1. On A\ω, define x ∼ y iff there is an n ∈ ω such that xn > y
and yn > x. Observe that ∼ is an equivalence relation and the set of
equivalence classes of A\ω is densely ordered (and hence isomorphic to
Q). Let [a] denote the equivalence class of a.

For (a), let E = ω ∪
⋃
{[b] : b ∈ A\ω & b ≤ a}. For (b), note that

every Dedekind cut in A/∼ defines a nice subset of A, so that there is a
nice subset of A for each real number.

M2. For (a): Observe that realizing types is is equivalent to realizing
consistent sets of formulas of LA. We have A 4 B 4 C. Let Σ(~x, ~y) be a
consistent set of formulas over some countable E ⊆ A, where ~x denotes an
m–tuple and ~y denotes an n–tuple. So, every finite subset of Σ is realized
in A. We must show that Σ(~x, ~y) is realized in C. For ϕ(~x, ~y) ∈ Σ(~x, ~y), let
ϕ′(~x) be ∃~yϕ(~x, ~y), and let Σ′ = {ϕ′ : ϕ ∈ Σ}. Then Σ′(~x) is a consistent

set of formulas over E in m variables, so is realized by some ~b ∈ B (using

satm(A, B)). Now, replacing ~x by ~b, we get Σ∗(~y) = Σ(~b, ~y). WLOG,
the original Σ was closed under ∧, which implies that every finite subset
of Σ∗ is realized in B; thus Σ∗ is a consistent set of formulas over the

countable E∪{~b}. Then Σ∗ is realized by some ~c ∈ C (using satn(B, C)),

and (~b,~c) realizes Σ.
For (b), let A be the field of algebraic numbers and let B be an al-

gebraically closed field of transcendence degree 1. Then B omits the
two-type (over ∅) consisting of all p(x, y) 6= 0 such that p is a non-trivial
polynomial over Q.

M3. See Lou van den Dries, Tame topology and o-minimal structures,
Chapter 3, Theorem 1.2, for a proof.
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S1. We get α0 < α1 < · · ·αn < ω1 such that

L(α0) ≺ L(α1) ≺ · · · ≺ L(αn) ≺ L(ω1) (∗)
by the Löwenheim–Skolem–Tarski Theorem. Now, let αn be the least
ordinal such that L(αn) is a model for ZF – P and such that there exist
α0 < α1 < · · ·αn−1 < αn satisfying

L(α0) ≺ L(α1) ≺ · · · ≺ L(αn) ; (†)
there is such an αn < ω1 by (∗). Let ϕ be the sentence which asserts
the existence of a sequence of n + 1 ordinals α0 < α1 < · · ·αn−1 < αn

satisfying (†). Then L(αn) |= ¬(†) (because αn is least), while β > αn

and L(β) |= ZF –P implies that L(β) |= (†), so L(αn) 6≺ L(β).
The “ZF – P” is included just to ensure that elementary model theory

is absolute for the transitive models in question.

S2. Let P be the set of all finite p ⊆ S such that p ∩ Cx = ∅ for each
x ∈ p. Define q ≤ p iff q ⊇ p. Note that ∅ = 1 ∈ P and {x} ∈ P for each
x ∈ S. If P is ccc, then by MA(ℵ1), there are distinct xα, for α < ω1,
so that the forcing conditions {xα} are all compatible, and we can let
T = {xα : α < ω1}.

Now, suppose that A is an uncountable antichain in P. We may assume
that A forms a ∆ system, and then, subtracting off the root, we may
assume that the elements of A are pairwise disjoint. For p ∈ A, let
C(p) =

⋃
{Cx : x ∈ p}. We may then list a subset of A as {pα : α < ω1}

so that pα ∩ C(pξ) = ∅ whenever ξ < α. Then pξ ∩ C(pα) 6= ∅ whenever
ξ < α, since pα ⊥ pξ. Since the pα are disjoint, we may find open
U, V ⊆ R such that U ∩ V = ∅, and pξ ⊆ U for uncountably many ξ and
pα ⊆ V for uncountably many α. Then, fix any α such that pα ⊆ V and
pξ ⊆ U for infinitely many ξ < α. Since pξ ∩ C(pα) 6= ∅ for these ξ, we
have U ∩ C(pα) is infinite, which is impossible, since the Cx for x ∈ pα

all converge to points in pα, which is disjoint from U .

S3. For (a): f is a union of a compatible family of order-preserving
injections, so f is an order-preserving injection. {p : a ∈ dom(p)} and
{p : a ∈ ran(p)} are dense and in M for each a ∈ Q, so that dom(f) =
ran(f) = Q.

For (b), suppose that f̂ ′(r) < n, for some n ∈ ω. Then there are
a, b ∈ Q with a < r < b such that whenever a < c < r < d < b:

f̂(d)− f̂(r) ≤ n(d− r), and f̂(r)− f̂(c) ≤ n(r− c), so that f̂(d)− f̂(c) ≤
n(d− c). But

{p ∈ P : ∃c, d ∈ dom(p) [a < c < r < d < b & p(d)− p(c) > n(d− c)]}
is in M (since r ∈ M) and is dense, a contradiction.
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