
Qualifying Exam
Logic

August, 2007

Instructions:

If you signed up for Computability Theory, do two E and two C problems.
If you signed up for Model Theory, do two E and two M problems.
If you signed up for Set Theory, do two E and two S problems.

If you think that a problem has been stated incorrectly, mention this
to the proctor and indicate your interpretation in your solution. In such
cases, do not interpret the problem in such a way that it becomes trivial.

E1. Let Σ be any first order theory. Let G be the class of groups which
are isomorphic to a subgroup of the automorphism group of some model
of Σ. Prove that there is a first-order theory Π in the language of group
theory such that G is the class of all models of Π. Hint. This just uses
the Compactness Theorem. You don’t need to know any theorems about
the structure of the groups in G.

E2. Let L = {p}, where p is a 3–place predicate. Define the structure
A for L by: A is the unit circle in the plane, and p(a, b, c) holds iff a, b, c
are all different and the triangle abc is counterclockwise. Prove that the
theory of A, Th(A), is decidable.

E3. Prove that if X is an uncountable set of reals, then it contains a
subset order isomorphic to the rationals.
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Computability Theory

C1. Prove that given any computable function h, there are indices x and
y such that Wx = Dy and y > h(x).

Here, Dy is the finite set with canonical index y. An appropriate
explicit definition is:

y =
∑
n∈Dy

2n ;

that is, the binary representation of y is the characteristic function of Dy.

C2. Prove that any m-degree contains either only a single 1-degree or
infinitely many (in fact, an infinite, strictly ascending chain of) 1-degrees.
Hint: Given A, consider A⊕ A, (A⊕ A)⊕ (A⊕ A), etc.

C3. Prove that any mitotic c.e. set is autoreducible. (A c.e. set A is
mitotic if A is the disjoint union of two c.e. sets B and C with A ≡T

B ≡T C; a c.e. set A is autoreducible if there is a Turing functional Φ
such that for all x, Φ(A \ {x}; x) = A(x), i.e., A(x) can be computed
from A without querying A(x).)
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Model Theory

M1. Let A be a structure for a countable L, and assume that L contains
a unary predicate U . Assume that |A| = ℵω, 2ℵ0 = ℵ5, and |UA| = ℵ0.
Prove that there is an elementary extension B of A such that |B| = ℵω+1

and |UB| = ℵ6.

M2. Let Σ be the theory of infinite abelian groups of exponent 6 (that
is, ∀x [x6 = 1] ).

a. Prove that every complete extension of Σ is ω–stable.
b. Which complete extensions of Σ are ℵ1–categorical?

M3. Let L = {<,U}, where U is a unary predicate. Let Σ be the axioms
which say that the universe is infinite and < is a total order; so Σ does
not mention U . It is easily seen (but you’re not required to prove this)
that Σ has 2ℵ0 maximally consistent extensions. Prove that exactly 7 of
these extensions have quantifier elimination.
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Set Theory

S1. Let R be a binary relation on ω, S a binary relation on some infinite
ordinal α, and assume that R,S ∈ L and that (in V )

∃X ⊆ α [(ω,R) ∼= (X, S)] (∗)
Prove that (∗) is true in L.

S2. Let κ be an uncountable cardinal of countable cofinality. Let A be
any family of finite sets with |A| = κ.

a. Prove there exists a set B ∈ [A]κ and a countable set R such that
X ∩ Y ⊆ R for all distinct X, Y ∈ B.

b. Give an example of such an A where the R in Part (a) cannot be
taken to be finite; that is, there is no B ∈ [A]κ and a finite set R
such that X ∩ Y ⊆ R for all distinct X, Y ∈ B (so, the standard
∆-system lemma fails if we replace ℵ1 with κ).

S3. Let M be a countable transitive model of set theory. For n ≤ ω
let Pn be the poset of finite partial functions from ω × n to 2, ordered
as usual by reverse inclusion. Prove that there exists G ⊆ Pω such that
G∩ Pn is Pn-generic over M for each n < ω but G is not Pω-generic over
M .
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Answers

E1. Given a group G, the natural way to build an A |= Σ with G ⊆
aut(A) is to add a unary fα for each α ∈ G and add the statements that
each fα is an automorphism, plus the axioms ∃x [fα(x) 6= fβ(x)] whenever
α 6= β, plus the axioms ∀x [fγ(x) = fα(fβ(x))] whenever γ = α · β. If
this fails to be consistent, then by the Compactness Theorem, there is
some finite bad subset {α1, . . . , αn} such that just the axioms involving
α1, . . . , αn cause the inconsistency.

Now, let Π contain the axioms for groups, plus that statement that the
group contains no bad subsets. So, for each bad subset {α1, . . . , αn} of
each group G, Π contains the statement:

¬∃x1 · · ·xn

 ∧
1≤i<j≤n

xi 6= xj ∧
∧

αi=αjαk

xi = xjxk


This is due to Rabin, Michael O. Universal groups of automorphisms of

models. 1965 Theory of Models (Proc. 1963 Internat. Sympos. Berkeley)
pp. 274–284 North-Holland, Amsterdam.

E2. Let B = ([0, 1], <). Then Th(B) is decidable, since it is the theory
of dense total order with endpoints, which is ℵ0–categorical. Now, note
that Th(A) can be reduced to Th(B) by viewing S1 as [0, 1]/{0, 1}.

E3. Write Q as the increasing union of finite sets Qn for n ∈ ω, where
each |Qn| = n. Inductively choose ϕn : Qn → X so that

a. ϕn is 1-1 and order-preserving.
b. ϕn+1 ⊃ ϕn.
c. (ϕn(q),∞)∩X and (−∞, ϕn(q))∩X are both uncountable for all

q ∈ Qn.
d. (ϕn(p), ϕn(q))∩X is uncountable for all p, q ∈ Qn such that p < q.

Then
⋃

n ϕn embeds Q into X.

C1. Define a computable function g by setting

Wg(x) = {1 + max
⋃

z≤h(x)

Dz}

and apply the Fixed-Point Theorem.

C2.
Lemma 1. There exists B ≡m A such that B <1 B ⊕B.
Lemma 2. If C <1 C ⊕ C, then C ⊕ C <1 (C ⊕ C)⊕ (C ⊕ C).

Given these two results, let A0 = B from Lemma 1. Then inductively
define An+1 = An⊕An. By Lemma 2, An <1 An+1 and since C⊕C ≡m C
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for any C we have that A ≡m An for any n and the 1-degrees of the An

are distinct.
Proof of Lemma 1: For any B suppose B⊕B ≤1 B, then B×ω ≤1 B.

Suppose f is a computable one-one reduction of B ⊕B to B. Note that
n ∈ B implies f(2n) ∈ B and f(2n + 1) ∈ B

and
n ∈ B implies f(2n) ∈ B and f(2n + 1) ∈ B.

Iterating this (and since f is one-tone) we can find a computable map
h such that |Dh(n.k)| = 2k for each n, k and
n ∈ B implies Dh(n,k) ⊆ B

and
n ∈ B implies Dh(n,k) ⊆ B.

Using h it is easy to construct a one-one computable map reducing
B × ω to B.

But the cylindar set B×ω has maximal 1-degree, i.e., if C ≤m B, then
C ≤1 B×ω. Hence, if Lemma 1 is false, then the m-degree of A contains
only the “top” 1-degree.

Proof of Lemma 2: This has a simliar proof. By the above argument
there is a computable map h such that |Dh(n.k)| = 2k for each n, k
n ∈ C ⊕ C implies Dh(n,k) ⊆ C ⊕ C

and
n ∈ C ⊕ C implies Dh(n,k) ⊆ C ⊕ C.

Obtain a one-one computable map f reducing C ⊕ C to C as follows.
Note that for any n the set of m such that either 2m of 2m + 1 is in
Dh(n,n+1) is at least half the size of this set or 2n. So given input n choose
m to be the least so that m 6= f(k) for any k < n and either 2m or 2m+1
is in Dh(n,n+1). Put f(n) = m.

This result is due to Young, Paul R. Linear orderings under one-one
reducibility. J. Symbolic Logic 31 1966 70–85.

C3. We describe an algorithm for computing A(x) using an oracle for
A \ {x}. Note the usual splitting argument gives that we can compute
B \ {x} and C \ {x} from A \ {x} (i.e., input y 6= x, check if y ∈ A, if
it is, recursively enumerate B and C to see which it is in.) Suppose that
A = {e1}B = {e2}C .

Input x.
Using A \ {x} simulate the computations
(1) {e1}B\{x}(x),
(2) {e2}C\{x}(x),
and simultanealously, recursively enumerate A and
(3) wait for x to show up in A.
There are two possible outcomes. Either both (1) and (2) converge or

(3) converges. This is because if x /∈ A then both (1) and (2) converge,
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since x is in neither B or C. Since B and C are disjoint, in fact, at
least one of (1) or (2) converges to the correct value of A(x). So if both
converge to the same value, this value is the value of A(x). If both (1)
and (2) converge but to different values, then we know that x ∈ A.

This is due to Ladner, Richard E. Mitotic recursively enumerable sets.
J. Symbolic Logic 38 (1973), 199–211.

M1. Obtain B = Aω6 as the union of an elementary chain. A0 = A.
When 0 < α < ω6, |Aα| = ℵω+1 and |UAα| = ℵ5 = 2ℵ0 . At limits, take
unions. Make sure that each UAα+1 properly contains UAα , so that |UB|
will be ℵ6, not ℵ5.

Given Aα, let C = Cα = (Aα)ω/V , where V is a non-principal ultrafilter
on ω. Then |UC| = 2ℵ0 = ℵ5 but |C| = (ℵω+1)

ℵ0 = (ℵω)ℵ0 ≥ ℵω+1, so we
get Aα+1 by taking an elementary submodel.

M2. Let V λ
p be the abelian group of exponent p with λ generators.

Then the models A |= Σ of size ℵ1 are of the form V κ
2 ⊕ V λ

3 , where
max(κ, λ) = ℵ1. If S ∈ [A]ω, then the automorphisms fixing S have
only countably many orbits, so Th(A) is ω–stable. If κ or λ are finite,
then Th(A) is ℵ1–categorical. If κ and λ are infinite, then Th(A) is not
ℵ1–categorical, since V ℵ0

2 ⊕ V ℵ1
3 ≡ V ℵ1

2 ⊕ V ℵ0
3 ≡ V ℵ1

2 ⊕ V ℵ1
3 .

M3. Let Π be one of these extensions. Consider A |= Π, and write U
for UA. If Π makes U finite, then there is no way to distinguish the first
element of U from any other element of U by a quantifier-free formula, so
|U | is 0 or 1. Repeating this argument with A\U , we see that Π specifies
each of |U | and |A\U | to be either 0 or 1 or ∞.

If U is infinite, then there exist a, b ∈ U with a < b and ∃x [a < x < b].
Since all such pairs a, b from U with a < b satisfy the same quantifier-free
formulas, U must be densely ordered. A similar argument shows that U
has no first or last element.

Likewise, if A\U is infinite, then A\U is densely ordered with no first
or last element. Also, if U = {a}, then a must be either the first or last
element. We now have the following 7 cases:

1. U = ∅ and < is a dense total order without endpoints.
2. U = A and < is a dense total order without endpoints.
3. U = {a}, a is the first element, and < is a dense total order

without last element.
4. U = A\{a}, a is the first element, and < is a dense total order

without last element.
5. U = {a}, a is the last element, and < is a dense total order

without first element.
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6. U = A\{a}, a is the last element, and < is a dense total order
without first element.

7. < is a dense total order without endpoints and U and A\U are
both dense in A.

In all cases, the theory is ℵ0–categorical, and quantifier-elimination can
be proved by showing that every n–type is axiomatized by its quantifier-
free sentences. To see this, use automorphisms in countable models.

S1. In L, define P to be the set of all finite partial isomorphisms. So,
elements of P are finite partial functions p from ω to ω such that p is
an isomorphism from (dom(p), R) to (ran(p), S) and dom(p) ∈ ω. Let <
order P by proper extension, so the largest element 1 = ∅.

In V : P is not well-founded, since we can use an isomorphism from
(ω,R) into (α, S) to define a decreasing ω–sequence in P. But then, by
absoluteness of “well-founded”, P is not well-founded in L either, and in
L we can use a decreasing ω–sequence in P to prove that (∗) is true.

S2. Fix uncountable regular θn with θn ↗ κ.
For Part (a): Since θn is uncountable and regular, the standard ∆-

system lemma holds at θn, so we can choose Cn ∈ [A]θn such that Cn

forms a ∆-system with some finite root Rn. Then, for each n, the sets
X\Rn for X ∈ Cn are pairwise disjoint, so we may choose Bn ∈ [Cn]θn

such that (X\Rn) ∩
⋃

j<n

⋃
Cj = ∅ for all X ∈ Bn. Now, let B =

⋃
n Bn

and R =
⋃

n Rn.
For Part (b): Let A be the family of all sets of the form n ∪ {ξ} (of

size n + 1) such that n ∈ ω and θn < ξ < θn+1.

S3. Let {Dk : k ∈ ω} list all sets D ∈ M such that for some n < ω:
D ⊆ Pn and D is dense in Pn. Say Dk is dense in Pnk

.
As in the usual proof of the generic set existence lemma, get a sequence

1 = p0 ≥ p1 ≥ p2 · · · ∈ Pω, and let G = {q ∈ Pω : ∃k [q ≥ pk]}. Then
G is a filter on Pω and each G ∩ Pn is a filter on Pn. Make sure that
pk+1 � (ω× nk) ∈ Dk for each k. Then G∩Pn will be Pn-generic for each
n < ω. Also make sure that each pk(0, `) = 0 whenever (0, `) ∈ dom(pk);
to ensure this at each stage, get pk ≥ rk ≥ pk+1, where rk(0, `) = 0 for
all ` < nk. Then G is not generic because it does not meet the dense set
{q : ∃` [q(0, `) = 1]}.
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