
Qualifying Exam
Logic

August 2008

Instructions:

If you signed up for Computability Theory, do two E and two C problems.
If you signed up for Model Theory, do two E and two M problems.
If you signed up for Set Theory, do two E and two S problems.

If you think that a problem has been stated incorrectly, mention this to
the proctor and indicate your interpretation in your solution. In such cases,
do not interpret the problem in such a way that it becomes trivial.

E1. (Prove or disprove) A total order is well-ordered iff every suborder of
it is isomorphic to an initial segment.

E2. Let A and B be disjoint infinite sets of positive integers. Let (M,R)
be the following model. The universe is

M = A ∪B ∪ (A×B)

and R is the following ternary relation:

R = {(a, b, (a, b)) : a ∈ A, b ∈ B}.

Prove that T = Th(M,R) is not finitely axiomatizable.

E3. Let T be a consistent axiomatizable theory with only finitely many
complete extensions in the same language. Show that T is decidable. (Here,
a theory is a set of sentences closed under deduction, and it is axiomatizable
if it is the deductive closure of a computable set of sentences.)
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Computability Theory

C1. Prove that if A ≤wtt B, then A ≤tt B ⊕ ∅′.
Recall that:
A set A is truth-table reducible to a set B, abbreviated tt-reducible (A ≤tt

B), if there are recursive functions f and g such that x ∈ A if and only if
B � f(x) = Dy for some y ∈ Dg(x).

A set A is weak truth-table reducible to a set B, abbreviated wtt-reducible
(A ≤wtt B), if there are recursive functions f and g such that A(x) = i if
and only if B � f(x) = Dy for some y ∈ Wg(x,i).

C2. Prove that no ∆0
2-complete set exists.

Hint : Let A be ∆0
2. Build another ∆0

2 set B �m A by diagonalization.

C3. Show that every hyperimmune set H is a subset of some 1-generic G.
Hint : Build G by finite extensions. Given an approximation τ ∈ 2<ω

to G, look at extensions of τ1n.
Recall that a setH is hyperimmune iff for any computable strictly increas-

ing sequence (nk : k < ω) there exists a k such that the interval [nk, nk+1) is
disjoint from H. A set G is 1-generic iff for any computable enumerable set
W ⊆ 2<ω there exists τ ⊆ G an initial segment such that either τ ∈ W or
no extension of τ is in W .
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Model Theory

M1. Let L be a first order language without function symbols. For an
L-structure A realizing a complete 1-type Γ(x), define A�Γ to be the sub-
structure of A whose universe is {a ∈ A : a realizes Γ in A}.

Prove or disprove:
For L-structures A,B, if A�Γ and B�Γ are both countably infinite and

ℵ0-categorical, then A�Γ ∼= B�Γ.

M2. Let L = {<} and let Σ be a complete theory in L. Assume that Σ has
infinite models and that Σ includes the axioms that < is a (strict) partial
order and is tree-like — that is,

∀x, y, z [x < z ∧ y < z → [x = y ∨ x < y ∨ y < x] .

Assume that no model of Σ has an infinite chain. Prove that Σ is κ–stable
for all κ ≥ 2ℵ0 .

M3. Let M be an ordered field. Define x ≡M y iff x and y satisfy all
formulas |x− y| ≤ 1/n for n = 1, 2, . . ..

Prove that if M is sufficiently saturated, then the linear order

((0 ≤ x ≤ 1)M/ ≡M)

is isomorphic to the unit interval of the real line.
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Set Theory

S1. Assume MA(ℵ1). Assume that xα, yα ∈ [Q]ω for α ∈ ω1 and xα ⊥ yβ

for all α, β. Assume further that each xα and yβ is a convergent ω–sequence
in R, with xα converging to rα and yβ converging to sβ, where rα 6= sβ and
rα, sβ /∈ Q for all α, β. Prove that for some c ∈ [Q]ω: xα ⊆∗ c and yβ ⊥ c for
all α, β.

Notation. [Q]ω is the collection of all infinite sets of rationals. For x, y ∈
[Q]ω, x ⊥ y means that x ∩ y is finite, and x ⊆∗ y means that x\y is finite.

S2. Let M be a countable transitive model of ZFC. Fix T ∈ M such that
M |= “T is an ω1–Aronszajn tree”. Let P ∈M be the forcing poset of finite
partial functions from κ to 2 (so κ ∈M). Let G be P–generic over M . Prove
that M [G] |= “T is an ω1–Aronszajn tree”.

S3. Assume V = L. Let γ be the least ordinal such that L(γ) ≡ L(ω1).
Prove that L(γ) ≺ L(ω1).
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Answers

E1. This is true. If the order fails to be a well-order, write it as α + E,
where α ∈ ON and E 6= ∅ is a total order with no least element. But, if
e ∈ E, then α ∪ {e} cannot be isomorphic to an initial segment of α+ E.

E2. Since a natural number is never an ordered pair, the three sets
A,B, (A × B) are pairwise disjoint. Thus, we may axiomatize T by say-
ing that:

1. The universe is partitioned into three disjoint sets,
A := {x : ∃y, z R(x, y, z)}, B := {y : ∃x, z R(x, y, z)},
C := {z : ∃x, y R(x, y, z)}.

2. R defines a bijection between A×B and C.

3. For each n ∈ ω: A and B each have at least n elements.

These axioms are complete, since they are ℵ0–categorical; hence, they do
indeed axiomatize T . Since axioms (1)(2) alone have models in which |A| =
|B| = n and |C| = n2, no finite subset of (1)(2)(3) can axiomatize T , so T is
not finitely axiomatizable.

E3. Since any two complete extensions can be distinguished by a sentence
there must be n < ω and sentences θi for i < n such that T ∪ {θi} for i < n
is a list of all complete extensions of T . Complete axiomatizable theories are
decidable. To decide if T ` θ simple check that T ∪ {θi} ` θ for all i < n.

C1. Let f and g be the computable functions witnessing A ≤wtt B. Note
there there is a computable function h such that y ∈ Wg(x,1) iff h(x, y) ∈ ∅′.
Define

f̂(x) = 2 max{f(x), h(x, y):Dy ⊆ {0, . . . , f(x)− 1}}+ 1.

This is defined so that we can determine the value of A(x) from B⊕∅′ � f̂(x).
In particular, defineDĝ(x) to be the set of all z such that there is a y for which:

• Dz ⊆ {0, . . . , f̂(x)− 1},

• Dy = {n < f(x): 2n ∈ Dz}, and
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• 2h(x, y) + 1 ∈ Dz.

Then f̂ and ĝ witness A ≤tt B ⊕ ∅′.

C2. Let
B = {e : ϕe(e) ↓ and ϕe(e) /∈ A}.

Then B is Turing reducible to A⊕ ∅′ hence it is ∆0
2. But it is not many-one

reducible to A.

C3. (Jockusch) Suppose W ⊆ 2<ω is computable enumerable and τ is an
approximation to G.

Case 1. There exists n such that σ /∈ W for all σ ⊇ τ1n. We take any
such τ1n to be our next approximation to G.

Case 2. Not case 1. We build a computable strictly increasing sequence
nk so for each k there exists a σk in W of length less than nk+1 which extends
τ1nk . By hyperimmunity there exists k such that the interval [nk, nk+1) is
disjoint from H. We take any such σk as the next approximation to G.

M1. This is false. For example, let L = {<} ∪ {Pn : n ∈ ω}, where each
Pn is unary. Let Σ be the theory which says that < is a dense total order
without endpoints, each Pn is a non-empty proper initial segment without
a largest element, each Pn+1 $ Pn, and the complement of each Pn has no
smallest element. Then Σ is complete and Σ ∪ {Pn(x) : n ∈ ω} defines a
(complete) 1-type Γ(x). Let A and B be built on the rationals, but let A�Γ
be a non-empty initial segment with a largest element, and let B�Γ be a
non-empty initial segment without a largest element.

M2. If T has no model with an infinite chain, then by compactness there
must be n < ω such that no model of T contains a chain of length n. We
show that T is κ-stable for any κ of size at least the continuum. Suppose for
contradiction that T has a model A with contains a set X of size κ and Y of
size κ+ such that the type over X of each element of Y is distinct. Say that
two elements of A are in the same component iff there are above the same
minimal element. Then by cutting down Y we may assume that either

Case 1. All elements of Y are in the same component.
or
Case 2. Elements of Y are in distinct components.
Assume case 1. Since components of A are trees of height less than n we

may assume (by cutting down Y ) that there exists a node w such that for all
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u ∈ Y there exists an immediate child cu of w such that w < cu ≤ u and for
distinct u, v ∈ Y we have that cu 6= cv. For u ∈ Y let Au be the substructure
A consisting of {v : cu ≤ v}. By cutting down Y we may assume the no
element of X is in Au for any u ∈ Y . Since κ is at least the continuum
we may find distinct u, v ∈ Y such that (Au, u) is elementary equivalent to
(Av, v). But now the obvious Ehrenfeucht game strategy (play the identity
outside Au and Av), shows that u and v have the same type over X.

A similar argument works for Case 2.

M3. All elements x in [0, 1]M are equivalent to some standard real:
For each n = 1, 2, . . . there exists kn < n with

kn

n
≤ x ≤ kn + 1

n
.

Then x ≡M r where r = supn
kn

n
.

Sufficiently saturated implies that this “standard part map” is surjective.

S1. Let

P = {p ∈ Fn(ω1, [Q]<ω) : ∀α, β ∈ dom(p) [xα\p(α) ∩ yβ\p(β) = ∅]} .

Assuming that P is ccc, let G be a filter meeting the dense sets {p : α ∈
dom(p)} for each α < ω1, and let F =

⋃
G. Then each xα\F (α) ∩ yβ\F (β) =

∅, so we can let c =
⋃
{xα\F (α) : α < ω1}.

To prove that P is ccc, we show that in fact P is σ–centered. For each
p ∈ P, let Hp =

⋃
{xα\p(α)∪ {rα} : α ∈ dom(p)} and let Kp =

⋃
{yα\p(α)∪

{sα} : α ∈ dom(p)}. Then Hp, Kp are disjoint compact subsets of R, so
there are U, V which are finite unions of rational open intervals such that
Hp ⊂ U and Kp ⊂ V . There are only ℵ0 such U, V , and for each such U, V ,
{p : Hp ⊂ U & Kp ⊂ V } is centered.

S2. Assume that T fails to be an Aronszajn tree in M [G]. Since P is ccc,
the failure must be because in M [G], T has an uncountable chain.

In M , there is a name C̊ such that some p ∈ P forces C̊ to be an uncount-
able maximal chain in T . Maximality implies that C̊ meets every level, so
for each α, choose qα ≤ p and tα in level α of T such that qα  tα ∈ C̊. Now,
the proof that this P is ccc actually yields an uncountable E ⊆ ω1 such that
the pα, for α ∈ E, are pairwise compatible. So, in M , the set {tα : α ∈ E} is
an uncountable chain, contradicting the assumption that T is Aronszajn.
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S3. LetD be the set of elements of L(γ) which are definable in L(γ) without
parameters. Then D � L(γ) because L(γ) has a definable well-order. If L(δ)
is the transitive collapse of D, then δ ≤ γ and L(δ) ≡ L(ω1), so that δ = γ.
Thus, D = L(γ).

Now, for a ∈ L(γ), choose a formula ϕa(x) which defines a in L(γ), and
prove that ϕa also defines a in L(ω1). For a ⊆ ω or a ⊆ ω×ω, this is easy by
absoluteness of natural numbers and L(γ) ≡ L(ω1). For general a, use the
fact that L(γ) |= “all sets are countable”, and the fact that a is determined
by a relation on ω isomorphic to trcl({a}).

Finally, L(γ) ≺ L(ω1) because L(γ) |= ψ[a1, . . . , an] is equivalent to
L(γ) |= ∃x1, . . . xn [ψ[x1, . . . , xn] ∧ ϕa1(x1) ∧ · · · ∧ ϕan(xn)].
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