Instructions:

Do two E problems and two problems in the area C, M, or S in which you signed up.

Write your letter code on all of your answer sheets.

If you think that a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

E1. Prove that there is a computable group operation on ω whose center is not computable. So, you need a computable function * from ω^2 into ω which makes ω into a group such that the center:

$$\{x \in \omega : \forall y \in \omega \, [x * y = y * x]\}$$

is not computable.

- **E2.** Suppose A and B are sets of positive reals which are well-ordered by the ordering on the reals. For each of the following show that it is a well-order or give an example showing it may not be.
 - (a) $A + B = \{a + b : a \in A \text{ and } b \in B\}$
 - (b) $AB = \{ab : a \in A \text{ and } b \in B\}$
 - $(c) A^B = \{a^b : a \in A \text{ and } b \in B\}$
 - (d) $A/B = \{a/b : a \in A \text{ and } b \in B\}$
- E3. Let L be the language containing one binary relation symbol. A graph is a symmetric irreflexive binary relation. It is n-colorable iff there is a map from its universe into n such that no two elements in the relation are assigned the same value.
- (a) Show that there is a first order L-theory T whose models are exactly the 3-colorable graphs.
 - (b) Prove that T is not finitely axiomatizable.

Computability Theory

C1. Prove or disprove: There is a \emptyset -partial computable function f such that for any index e, if $\lim_s \varphi_e(-,s)$ is the characteristic function of a c.e. set S, then $S = W_{f(e)}$.

In this problem $\{\varphi_e\}_{e\in\omega}$ is the standard uniformly computable enumeration of all partial computable functions of two variables.

C2. Let X be a noncomputable c.e. set. Prove that there are disjoint computably inseparable c.e. sets A and B such that $X = A \cup B$.

C3. Prove:

- 1. If G is 1-generic, then G is hyperimmune.
- 2. Conclude that if G is 1-generic, then \overline{G} is hyperimmune.
- 3. Construct a non-1-generic set G such that both G and \overline{G} are hyperimmune.

An infinite $A \subseteq \omega$ is hyperimmune iff for any strong pairwise-disjoint array $D_{f(n)}$ for $n < \omega$ there exists an n with $D_{f(n)}$ disjoint from A. A set $G \in 2^{\omega}$ is 1-generic iff for any computably enumerable set $\mathcal{E} \subseteq 2^{<\omega}$ there exists τ an initial segment of G such that either $\tau \in \mathcal{E}$ or no extension of τ is in \mathcal{E} .

Model Theory

- M1. Assume that Σ is a complete theory with infinite models in a countable language L. Assume further that $P \in L$ is a unary predicate symbol, and that for any model M of Σ , P_M is an infinite sub-structure of M (so, P_M is closed under the functions of M). Let Σ_P be the theory of these P_M . Consider the following statements.
 - a. If Σ is \aleph_0 -categorical, then Σ_P is \aleph_0 -categorical.
 - b. If Σ is \aleph_1 -categorical, then Σ_P is \aleph_1 -categorical.
 - c. If Σ is ω -stable, then Σ_P is ω -stable.
 - Prove (a) and (c) and give a counter-example for (b).
- **M2.** An L-structure M is pseudo-finite if for every L-sentence ϕ which M satisfies, there exists a finite L-structure also satisfying ϕ . Let M be a pseudo-finite L-structure. Let f be a surjective L_M -definable function from M back to itself, i.e., definable by an L-formula possibly using parameters from M. Show that f is bijective.
- **M3.** For a graph G and $x, z \in G$ we say that z is in the n-neighborhood of x if there is path of length $\leq n$ connecting x to z. We say a graph G is locally transitive if for every $n \in \omega$, x and y in G, the n-neighborhoods of x and y are finite and isomorphic by a map taking x to y. A graph G is transitive if for every x and y in G there is an automorphism of G taking x to y.
 - (a) Prove that a locally transitive graph is transitive.
- (b) Prove that if G is a locally transitive graph, then any definable subset of G is finite or cofinite, i.e., G is strongly minimal. Definable means by a formula in one variable (possibly using parameters) in the language with a single binary relation symbol naming the edge relation.

Set Theory

S1. Prove that there is no order preserving map from a Suslin tree into the real numbers.

Here, a Suslin tree is a tree T of size \aleph_1 in which every chain and every antichain is countable. Let \square be the tree order. We call $f: T \to \mathbb{R}$ order preserving iff $x \square y \to f(x) < f(y)$ for all $x, y \in T$.

S2. Assume V = L. A *nice theory* is a complete theory T in the language of set theory such that $\{\alpha < \omega_1 : L_\alpha \models T\}$ is uncountable. Prove that there are \aleph_1 nice theories.

You may use Tarski's Theorem on the undefinability of truth without proof.

S3. Assume MA. Let E be any subset of \mathbb{R} with $|E| < 2^{\aleph_0}$. Prove that there is a Cantor set $K \subset \mathbb{R}$ and real numbers r_n for $n \in \omega$ such that $E \subseteq \bigcup_n (K + r_n)$.

A Cantor set is a homeomorphic copy of the Cantor space 2^{ω} .

Hints or Answers

- **E1.** For each prime p, let $B_p = \{p, p^2, p^3, p^4 \dots\}$, and choose a (possibly empty) subset $A_p \subseteq B_p \setminus \{p, p^2\}$. Let G_p be the group of permutations on B_p generated by (p, p^2) plus all (p, p^n) with $p_n \in A_p$, and let G be the group of permutations on ω generated by $\bigcup_p G_p$. Then $(p, p^2) \in Z(G_p)$ iff $(p, p^2) \in Z(G)$ iff $A_p = \emptyset$. Now, assume that $\{(p, p^n) : p^n \in A_p\}$ is decidable and $\{p : A_p = \emptyset\}$ is undecidable; so G is a decidable set of permutations and Z(G) is undecidable. Then, * is obtained via a computable bijection from ω onto G.
- **E2.** yes, yes, no, no. Show that any sequence in a well-ordered set has a subsequence which is either constant or strictly increasing.
- **E3.** (a) For each $n \ge 3$ there is a first-order sentence which says that every subset of size n can be partitioned into three subsets none of which contains adjacent vertices. (b) For any odd n > 1 an n-cycle is not 2-colorable. Adding another point adjacent to all vertices in the n-cycle gives a graph which is not 3-colorable but every proper subgraph is.
- **C1.** Suppose there is such an f. Let $\{f_s\}_s$ be uniformly computable such that $\lim_s f_s(e) = f(e)$ whenever e in the domain of f. Construct $F_{e,s}$ as follows:
 - 1. $F_{e,0} = \{0\}$
 - 2. if $f_s(e) \neq f_{s+1}(e)$, then $F_{e,s+1} = \{s+1\}$
 - 3. if $f_s(e) = f_{s+1}(e)$, $F_{e,s} = \{x\}$, and $x \in W_{f_s(e),s}$, then $F_{e,s+1} = \{\}$
 - 4. otherwise $F_{e,s+1} = F_{e,s}$.

By the recursion theorem there is an e such that $\varphi_e(-, s)$ is the characteristic function of $F_{e,s}$ all s. But $W_{f(e)}$ is not the limit of $F_{e,s}$.

- **C2.** If φ_e is total, show that there must be infinitely many s such that $\varphi_{e,s}(x_s) \downarrow$.
- C3. (a) Given a disjoint strong array $D_{f(n)}$ for $n < \omega$ consider

$$\{\sigma \in 2^{<\omega} : \exists n \ D_{f(n)} \subseteq \sigma^{-1}(1)\}$$

- (c) Construct G such that for any $n \in G$ either $n+1 \in G$ or $n-1 \in G$.
- **M1.** (a) Observe that every $\mathfrak{B} \models \Sigma_P$ has an elementary extension which is a P_M for some $M \models \Sigma$. When $\kappa = \aleph_0$, it follows that Σ_P has finitely many n-types for each n, and is hence \aleph_0 -categorical.
- (b) A counter-example: Let $L = \{P, Q, R, S, F, G\}$, where P, Q, R, S are unary predicate symbols and F, G are a binary predicate symbols. Let Σ say that Q, R, S partition the universe into infinite sets, $P = Q \cup R$, $F \subseteq Q \times S$ and F a bijection from Q onto S, and $G \subseteq R \times S$ and G a bijection from R onto S.
 - (c) as in (a).
- **M2.** Suppose f(x) = y is defined via the formula $\phi(x, y, \bar{a})$ where \bar{a} is some set of parameters from M. Take the formula:

" $\exists \bar{z}\phi(x,y,\bar{z})$ defines a surjective function which is not injective".

This formula is first order, so by pseudo-finiteness of M has a finite model. This is a contradiction as all surjections where the domain and range has the same finite size must be injections.

- M3. (taken from Constructive Models of Uncountably Categorical Theories, Herwig, Lempp, Ziegler Lemma on pg. 3)
- a) Fix c, d to be any elements of the graph. Let (C_i, c) and (D_i, d) be the i-neighborhoods of c and d respectively, and let (C, c) and (D, d) be the connected components of c and d respectively. Look at the set of maps $\{p|\exists i\in\omega \text{ such that }p:(C_i,c)\cong(D_i,d)\}$ ordered by extension. This set forms a finitely branching tree with infinite height, which by König's lemma has an infinite branch. This infinite branch gives an isomorphism between (C,c) and (D,d).
- b) Let H be a saturated model of the theory of G, and let $A \subset H$ be any finite set. We show that there is a unique non-algebraic type realized in H over A. It is clear that the type of any element within a connected component of an element of A is algebraic over A via the formula stating (for some n) $x \in Nbh_n(a)$ for some $a \in A$, as this set is given to be finite. It remains only to show that there is a unique type of an element outside of the connected components of elements of A. Let c and d be two elements outside of the connected components of the elements of A. Take an isomorphism between the connected components of c and of d which maps c to d. Extend this to a map on H by fixing every other point of H. Check that this gives an

automorphism of H which fixes A and moves c to d. Thus there is a unique non-algebraic type over A realized in H.

- **S1.** Suppose that we had such an f. In some ccc extension of the universe, V[G], we have a path through T (first prune T, and then force with it). But then, f restricted to this path would, in V[G], yield an order preserving map from ω_1 into \mathbb{R} , which is impossible.
- **S2.** Let A be the set of all nice theories, and assume that A is countable. Then A is a countable family of subsets of HF = $L(\omega)$, so $A \in L(\omega_1)$, and A is first-order definable in $L(\omega_1)$. Then the L-first injection from A into ω is also first-order definable in $L(\omega_1)$, so every member of A is first-order definable in $L(\omega_1)$.
- Let $T = Th(L(\omega_1))$, which is nice because $L(\omega_1)$ has a club of elementary submodels. But then $Th(L(\omega_1))$ is first-order definable in $L(\omega_1)$, contradicting Tarski's theorem on non-definability of truth.
- **S3.** The r_n can enumerate any countable dense set A; so we'll get $E \subseteq K + A$. Let \mathbb{P} be the set of all pairs $p = (U_p, e_p)$, where U_p is a finite union of rational open intervals and $e_p \in [U_p]^{<\omega}$. U_p is an outer approximation to K and e_p is a promise that the "generic" K will contain all points of e_p . So, define $q \leq p$ iff $e_p \subseteq U_q \subseteq U_p$ and $e_q \supseteq e_p$. Note that $\{q : \overline{U_q} \subseteq U_p\}$ is dense below p, so that $\bigcap \{U_p : p \in G\}$ will be a Cantor set if G is generic enough. For $x \in \mathbb{R}$, $\{p : x \in e_p\}$ is not dense, since once x gets kicked out, it stays out, but $\{p : (x + A) \cap e_p \neq \emptyset\}$ is dense.