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Instructions:
Do two E problems and two problems in the area C, M, or S in which

you signed up.
Write your letter code on all of your answer sheets.
If you think that a problem has been stated incorrectly, mention this to

the proctor and indicate your interpretation in your solution. In such cases,
do not interpret the problem in such a way that it becomes trivial.

E1. Let κ < γ be regular cardinals. Partially order κ × γ by saying
(α1, β1) ≤ (α2, β2) iff α1 ≤ α2 and β1 ≤ β2. Then x < y means x ≤ y and
x 6= y. Prove that there is no ordinal α and function f : α→ κ×γ such that
f is both cofinal and increasing :

∀x ∈ κ× γ ∃ξ < α [x < f(ξ)] and ∀ξ, η < α [ξ < η → f(ξ) < f(η)].

E2. Let T = Th(Z,+). Prove that T has uncountably many pairwise
nonisomorphic countable models.

E3. A linear order is scattered iff it does not contain a suborder isomor-
phic to the rationals. Prove that the class of scattered linear orders is not
axiomatizable.
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Model Theory

M1. Prove or disprove:
(a) Suppose T is a theory in a countable language, (Σn : n < ω) are partial

types, and for every N < ω T has a model omitting the types (Σn : n < N).
Then T has a model omitting the types (Σn : n < ω).

(b) Suppose T is a complete theory in a countable language, (Σn : n < ω)
are partial types, and for every N < ω T has a model omitting the types
(Σn : n < N). Then T has a model omitting the types (Σn : n < ω).

M2. Show the following are equivalent:
a) If A is a model of T , then the intersection of any 2 elementary sub-

structures of A is also an elementary substructure of A.
b) If A is a model of T , then the intersection of any family of elementary

substructures of A is also an elementary substructure of A.
c) If A is a model of T and B is an algebraically closed subset of A, then

B is an elementary substructure of A.

M3. (a) Suppose T is complete first order theory in a countable language.
Show that T has a countable saturated model implies T has a countable
prime model.

(b) Suppose A is an infinite structure in a countable language and ā a
finite tuple from A. Show that Th(A, ā) is countably categorical if and only
if Th(A) is.
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Set Theory

Notation. For a cardinal θ, [A]θ = {x ⊆ A : |x| = θ}.

S1. Assume Martin’s Axiom.
(a) If the continuum is ω2, prove there exists f : ω2 × ω2 → 2 for which

there does not exist H ∈ [ω2]ω and K ∈ [ω2]ω2 such that f restricted to
H ×K is constant.

(b) If the continuum is larger than ω2, prove that for every f : ω2×ω2 → 2
there exists H ∈ [ω2]ω and K ∈ [ω2]ω2 such that f restricted to H × K is
constant.

Hint for (b): You can find H ⊆ ω.

S2. Assume ♦, and prove that there is a Suslin tree T ⊆ 2<ω1 such that
s ∈ T ↔ t ∈ T whenever s =∗ t.

Here s =∗ t means that s, t are functions with the same domain and
{x ∈ dom(s) : s(x) 6= t(x)} is finite. Your tree should be a sequence tree in
the usual sense. So, in the tree order, s ≤ t iff t extends s; and, the root of
the tree is the empty sequence.

S3. A γ–tower is a sequence ~A = 〈aα : α < γ〉, where each aα ∈ [ω]ω, and
γ is a limit ordinal, and α < β → aβ ⊆∗ aα, and ¬∃x ∈ [ω]ω ∀α [x ⊆∗ aα].

Let M be a countable transitive model for ZFC, and assume that in M ,
~A is a γ–tower and P is a countable forcing poset.

Let G be P–generic over M . Prove that ~A is a still a tower in M [G].
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Sketchy Answers or Hints

E1 ans. It would imply that there is a cofinal map from κ to α and another
from γ to α.

E2 ans. For any set X of primes, it is possible to have a countable model
with an element which is only divisible by the primes in X.

E3 ans. Any infinite linear order is elementarily equivalent to some non-
scattered order.

M1 ans. (a) False. Let T = Th(ω,<, n)n∈ω in language with one additional
constant symbol c. Let Σ0 = {x > n : n < ω} and Σk = {(x = x ∧ c < k)}
for k > 0. (b) True, see Omitting Types Theorem.

M2 ans. See Thm 5.3.5 of Hodges short model theory or Exercise 8
p.293 of his long book. Hint for (a) implies (c): first show that for X ⊆ A
algebraically closed and b ∈ A \ X that there exists C and B with A,B
elementary substructures of C with X ⊆ B and b /∈ B.

M3 ans. (a) T has only countable many types, hence the atomic types
are dense, so T has a prime model. (b) See the proof of Vaught’s never two
Theorem.

S1 ans. (a) Let Hα for α < ω2 list [ω2]ω. Inductively define f so that
f�Hα×{β} is not constant for α < β. (b) Assume f ’s domain is ω×ω2. Let
U be a nonprincipal ultrafilter on ω. Find Hα ∈ U such that f�Hα × {α} is
constant. By MA there exists an infinite H with H ⊆∗ Hα for all α. Hence
for some n we have (H \ n) ⊆ Hα for ω2 many α.

S2 ans. In the standard construction make sure that when you build a
sequence going to the top that you also include all mod finite sequences and
that they go thru the dense set the diamond sequence is giving you.
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S3 ans. If the tower is filled by x ∈ M [G], then for some n < ω, p ∈ G,
and unbounded Γ ⊆ γ we have that for each α ∈ Γ that p forces x \ n ⊆ aα.
But then

⋂
α∈Γ aα fills the tower in M .


