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Instructions:
Do two E problems and two problems in the area C, M, or S in which

you signed up.
Write your letter code on all of your answer sheets.
If you think that a problem has been stated incorrectly, mention this to

the proctor and indicate your interpretation in your solution. In such cases,
do not interpret the problem in such a way that it becomes trivial.

If you are unable to solve a problem completely, you may receive partial
credit by weakening a conclusion or strengthening a hypothesis. In this case,
include such information in your solution, so the graders know that you know
that your solution is not complete.

If you want to ask a grader a question during the exam, write out your
question on an 81

2
by 11 sheet of paper, include your secret letter code and

which logic exam you are taking. Give it to the proctor. The proctor will
contact one of the logic graders who will retrieve your written question, write
a response, copy the sheet of paper, and return it to the proctor.

E1. Let T be a theory in the language consisting of a single binary relation
symbol such that T has an infinite model which is an equivalence relation.
Prove that T has two isomorphic countable models A0 and A1 such that A0

is a proper elementary submodel of A1.

E2. Let (I,<) be a totally ordered set with |I| = ℵ1. Let W be the family
of all subsets of I that are well-ordered by <. Prove that |W| is either ℵ1 or
2ℵ0 or 2ℵ1 .

E3. Let T be a recursively axiomatizable complete theory in an infinite
language. Prove that T has a recursive set of axioms which is independent.
Recall that a set of axioms is independent if no one of them is a logical
consequence of the others.
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Computability Theory

C1. A set S is superlow if S ′ is truth-table (tt) below 0′. Directly construct
a nonrecursive superlow set.

Recall that truth-table reducible means Turing reducible using a Turing
functional which is total for all possible oracles.

C2. Given a 2-coloring c of pairs of natural numbers (i.e., c : [ω]2 → 2), an
infinite set S is a “linear set” for the coloring c if S = {a0 < a1 < a2, . . .}
and the values c({ai, ai+1}) for all i are the same.

(1) Is there a computable 2-coloring for which there is no Σ1 linear set?
(2) Is there a computable 2-coloring for which there is no ∆2 linear set?

C3. Let P ⊆ 2ω be a nonempty Π0
1 class. Show that if A is not c.e., then

there is an X ∈ P such that A is not c.e. relative to X.
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Set Theory

S1. Assume that (G, ·) is a group which is an element of Gödel’s con-
structible universe, L, and in L (G, ·) has no subgroup isomorphic to the
rationals, (Q,+). Prove that in the universe, V , it’s also true that (G, ·) has
no subgroup isomorphic to (Q,+).

S2. Let M be a countable transitive model of ZFC, and let P be Cohen
forcing (finite partial functions from ω to ω). Call a function f : ω → ω
Cohen generic over M iff the filter Gf = {p ∈ P : p ⊂ f} is P-generic over M
in the usual sense, it meets every dense subset of P which is in M . Suppose
f ∈ ωω is P-generic over M and g ∈ ωω is in M and one-to-one. Define
h(n) = f(g(n)). Prove that h is P-generic over M . Prove it’s not true if g is
only assumed to be finite-to-one.

S3. Suppose (Aα ⊆ ω2 : α < ω2) and there exists α0 < ω2 such that all
have Aα order type α0.

(a) Prove there exists S ⊆ ω2 unbounded in ω2 and δ0 < ω2 such that
Aα ∩ Aβ ⊆ δ0 for all α 6= β ∈ S.

(b) Give an example showing that there may be no stationary S as in (a).
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Sketchy Answers or Hints

E1. First show that T has a infinite countable model A0 which is an
equivalence relation and either

• it has infinitely many infinite classes or

• for some n it has exactly n infinite classes and for some m all classes
of size greater than m are infinite.

Show that any countable elementarily extension of A0 is isomorphic to it.
Remark: This is true for any theory in a countable language with an

infinite model.

E2. Intended solution: Obviously, |W| ≤ 2ℵ1 . If I contains an uncountable
well-ordered set, then |W| = 2ℵ1 .

If not, then |W| ≤ (ℵ1)ℵ0 = 2ℵ0 , and ifW contains an infinite well-ordered
set, then |W| ≥ 2ℵ0 , so |W| = 2ℵ0 .

If all well-ordered subsets of I are finite (i.e., < is an inverse well-order),
then |W| = |I| = ℵ1.

E3. Given a list of axioms {ψn : n < ω} for T construct a strictly increasing
sequence of axioms for T , {θn : n < ω} as follows. Let θ0 be any consequence
of T which is not a logical validity. Given θn let θ = θn ∧ ψn. Using that the
language is infinite and T is decidable, show that one may effectively find ρ
a consequence of T such that θ ∧ ¬ρ is consistent. Let θn+1 = θ ∧ ρ. Show
that the sequence

θ0, θ0 → θ1, θ1 → θ2, . . .

is an independent axiomatization of T .

C1. Construct S by initial segments, forcing the jump. Let σ0 be the
empty string. At stage s+ 1, if there is a τ extending σs such that Φτ

s(s) ↓,
then let σs+1 be the first such τ found in some standard search. Otherwise,
let σs+1 = σs.
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Note that S =
⋃
σs is ∆0

2 and, becuase we forced the jump, low. In fact,
we will argue that it is superlow. Note that if we have S ′ � s, then we can
effectively find σs. But S ′(s) is Σ0

1 given σs. We will use this to recursively
determine S ′ from ∅′.

Define a computable function f : 2<ω → ω such that φf(ρ)(·) first attempts
to construct σ = σ|ρ| assuming that ρ is a prefix of S ′. It then searches for a
τ extending σ such that Φτ

|ρ|(|ρ|) ↓. If the search is successful, then φf(ρ)(·) ↓.
Using f we can recursively compute S ′ from ∅′ using the fact that

S ′(s) = ∅′(f(S ′ � s)).

This gives us a truth-table reduction.

C2. Say the computable two coloring c colors every pair either red or blue.

1. We construct a computable coloring c with no Σ0
1 linear set. At stage

s, we define c on all pairs m < s.

We first describe a module to satisfy the requirement

Re : We is not a linear set for c.

Say that the module is initializes at stage t0. At stage s, let a, b ∈ We be
the least consecutive pair such that b > a ≥ t0 and assume that the pair
first appears in We,t1 , where we can assume that t1 ≥ b. The module
demands that c(m, s) is is different from c(a, b) for every m ∈ [b, t1).
Note that if a, b have reached their final values, so that this holds for
every s ≥ t1, then the module ensures that We is not a linear set for
b. To see this, let m be the largest element in We ∩ [b, t1) and s the
smallest element in We∩ [t1,∞). Then c(a, b) has a different color than
c(m, s).

Organize the modules on a (finite injury) priority tree, where the nodes
at level e are modules for Re. The outcome of a module is the pair (a, b).
The priority tree ensures that the active modules are not making incom-
patible demands because if a module thinks that its outcome is (a, b)
and these entered We at stage t1, then all lower priority requirments
visted were initialized on or after stage t1, so they only make demands
on pairs with least element > t1.
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2. We show that there is always a ∆0
2 linear set. Call n a red point if

c(n,m) is red for every m > n. Note that ∅′ can detemine if n is a
red point. If there are infinitely many red points, then this set is linear
(and in fact, homogeneous). If not, we claim that there is a computable
linear set for blue. Let a0 be larger than every red point. If we have
defined ai, then using the fact that it cannot be a red point, let ai+1 > ai
be least such that c(ai, ai+1) is blue. Then {a0 < a1 < a2 < · · · } is a
linear set.

C3. We force by nonempty Π0
1-classes (actually subclasses of P ). Given a

Π0
1 classes Pe and a requirement We (the e-th enumeration oracle machine),

we first ask:
Is there an x such that A(x) = 0 and there is an n such that up to level

n we see that every member Y of Pe has W Y
e (x) = 1?

If so, the requirement is automatically satisfied (and Pe+1 = Pe). If not,
then we ask:

Is there an x such that A(x) = 1 and {Y ∈ Pe : W Y
e (x) = 0} is nonempty?

If so, take the above class as Pe+1 (in other words, terminate all the nodes
which enumerate x via We). If the answers to both questions are negative,
then it is easy to see that we can enumerate A from Pe directly, since A(x) = 1
if and only if there is an n such that up to level n we see that every member
Y of Pe has W Y

e (x) = 1.

S1. Intended solution: Working in L, list Q as {qi : i < ω}, and then con-
struct a tree T of height ω such that any infinite branch through T would yield
a subgroup of G isomorphic to Q. Then, use the fact that well-foundedness
is absolute.

Remark: If the group happened to have been countable in L, then this
would be consequence of Shoenfield’s Absoluteness.

S2. If D ⊆ P is dense then show that

{p ∈ P : p ◦ g ∈ D}
is dense.

S3. (b): take Aα of order type ω1 and Aα ∩ α unbounded in α for limit α.
for α > δ0 take δα ∈ Aα with δ0 < δα < α and apply push-down.


