Instructions: Do all six problems.¹

If you think that a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

If you are unable to solve a problem completely, you may receive partial credit by weakening a conclusion or strengthening a hypothesis. In this case, include such information in your solution, so the graders know that you know that your solution is not complete.

If you want to ask a grader a question during the exam, write out your question on an $8\frac{1}{2}$ by 11 sheet of paper. Give it to the proctor. The proctor will contact one of the logic graders who will retrieve your written question, write a response, copy the sheet of paper, and return it to the proctor.

E1. Let M model PA.

- 1. Show that there is no formula $\phi(x,y)$ so that every subset $D \subseteq M$ definable (with parameters) is defined in M by $\phi(x,b)$ for some b.
- 2. Show that for every $c \in M$, there is a formula $\phi(x, y)$ so that every subset $D \subseteq [0, c)$ definable (with parameters) is defined in M by $\phi(x, b)$ for some b.
- **E2.** Ordinal addition and multiplication are not commutative. Generalize this as follows: Let \star be any binary function on ω_1 . Assume that $\alpha \star 2 > \alpha$ for all $\alpha > \omega$, and that \star is continuous in the sense that $\alpha \star \beta = \sup_{n \in \omega} (\alpha \star \beta_n)$ whenever $\beta_0 < \beta_1 < \beta_2 < \cdots$ and $\beta = \sup_{n \in \omega} \beta_n$. Prove that \star is not commutative.
- **E3.** Call a model M "nice" iff for every $a, b \in M$, there is an automorphism of M that moves a to b. Let T be a theory in a countable language. Show that if T has a nice model of some infinite cardinality, then T has nice models of all infinite cardinalities.

C1. Prove or disprove:

- The d.c.e. sets are closed under union.
- The d.c.e. sets are closed under intersection.

¹Note that this is different from exams up until a year ago.

- C2. Use a finite-injury argument to show that there exists a non-autoreducible c.e. set. (Recall that a set A is *autoreducible* if there is a Turing functional Φ such that for all x, $A(x) = \Phi^{A-\{x\}}(x)$.)
- **C3.** Construct an infinite set X and an infinite set G disjoint from X such that for every $Y \subseteq X$, $Y \cup G$ is 1-generic.

Sketchy Answers or Hints

E1 answer.

- 1. Consider the definable set $\{x \mid \neg \phi(x, x)\}$.
- 2. $\phi(x,y)$ states that $x \in D$ iff the xth prime divides b.

E2 answer. Fix a limit ordinal β with $\omega < \beta < \omega_1$ such that β is closed under \star . Say $\beta = \sup_{n \in \omega} \beta_n$ where $\omega < \beta_0 < \beta_1 < \beta_2 < \cdots$. Then $\beta \star 2 > \beta$, but each $2 \star \beta_n < \beta$, so $2 \star \beta \leq \beta$ by continuity.

E3 answer. Expand the language by adding a ternary function A(x, y, z). The intent is that for each "fixed" x, y, A(x, y, z) is an automorphism that moves x to y.

To formalize this, add an axiom saying that for each x, y, the map $z \mapsto A(x, y, z)$ is a permutation of the model moving x to y. Also, for each symbol of the language, add an axiom saying that this permutation is an automorphism with respect to that symbol. For example, if P is three-placed predicate, add an axiom saying that for all x, y, and all $z_1, z_2, z_3, w_1, w_2, w_3$: $w_1 = A(x, y, z_1) \wedge w_2 = A(x, y, z_2) \wedge w_3 = A(x, y, z_3)$ implies that $P(z_1, z_2, z_3) \leftrightarrow P(w_1, w_2, w_3)$.

Then just apply the standard Löwenheim-Skolem Theorem to the new theory in the expanded language.

C1 answer.

- No: There is a properly 3-c.e. set A (by a direct argument) which can be written as the union of a d.c.e. set $A_1 A_2$ and a c.e. set A_3 for c.e. sets $A_1 \supset A_2 \supset A_3$.
- Yes: If $A = A_1 A_2$ and $B = B_1 B_2$ for c.e. sets A_1 , A_2 , B_1 and B_2 , then $A \cap B = (A_1 \cap B_1) (A_1 \cup A_2)$ is clearly d.c.e.

C2 answer. For each e, fix a witness x and wait for $\Phi^{A-\{x\}}(x) = 0$. Then enumerate x into A and restrain the rest of A on the use of $\Phi^{A-\{x\}}(x)$. Organize these strategies in a finite-injury argument.

C3 answer. We construct a sequence $Z \in \{0,1,*\}^{\omega}$. We define G by $G(n) = 1 \iff Z(n) = 1$ and X by $X(n) = 1 \iff Z(n) = *$. In other words, we want Z to be 1-generic no matter how we replace the *'s in Z with 0's and 1's.

If $\sigma \in \{0, 1, *\}^{<\omega}$ has n many *'s and $\rho \in 2^n$, let $\sigma[\rho]$ be the binary string that results from replacing the *'s in σ with the bits from ρ .

We build Z by initial segments. Let σ_0 be the empty string. Now assume that we have constructed σ_n and that it has n many *'s. Let W_n be the next c.e. set of binary strings. We want to meet or avoid W_n for every way that we can substitute for the *'s in σ_n . Let $\rho_1, \ldots, \rho_{2^n}$ list all of the binary strings of length n. Let $\tau_0 = \sigma_n$. Assume that we have defined τ_i . If there is a μ such that $\tau_i[\rho_{i+1}]\mu \in W_n$, then let $\tau_{i+1} = \tau_i\mu$. Otherwise, let $\tau_{i+1} = \tau_i$. Let $\sigma_{n+1} = \tau_{2^n}$ *. Finally, let $Z = \bigcup_{n \in \omega} \sigma_n$.