Instructions:

Do all six problems.¹

If you think that a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

If you are unable to solve a problem completely, you may receive partial credit by weakening a conclusion or strengthening a hypothesis. In this case, include such information in your solution, so the graders know that you know that your solution is not complete.

If you want to ask a grader a question during the exam, write out your question on an $8\frac{1}{2}$ by 11 sheet of paper. Give it to the proctor. The proctor will contact one of the logic graders who will retrieve your written question, write a response, copy the sheet of paper, and return it to the proctor.

E1. Let M be a structure where $\phi(x, y)$ defines a linear order on an infinite set $X \subseteq M$. Given any linear order-type τ , show that there are an $N \succeq M$ and an infinite set $Y \subset N$ of order-type τ defined by $\phi(x, y)$.

E2. Let \oplus and \otimes both be computable functions from $\omega \times \omega$ into ω such that (ω, \oplus) and (ω, \otimes) are both abelian groups with the property that every element other than the identity has order 5 or 7 or 35. Assume also that the two groups are isomorphic. Prove that there is a computable isomorphism between them.

E3. Prove that there is no family $\{A_{\alpha} : \alpha < \omega_1\} \subset \mathcal{P}(\omega)$ such that for all $\alpha < \beta$: $A_{\beta} \setminus A_{\alpha}$ is infinite and $|A_{\alpha} \setminus A_{\beta}| \leq 7$.

¹Note that this is different from exams up until a year ago.

Computability

Computability Theory

C1. Consider the set $SD = \{e: \varphi_e(0) \downarrow \text{ and } (\forall j < e) [\varphi_j(0) \neq \varphi_e(0)]\}$. Prove that SD is *immune*, i.e., contains no infinite c.e. set.

C2. Let *P* be a nonempty Π_1^0 -class. For any set *A*, show that there is a $B \in P$ such that the infimum of $\deg_T(A)$ and $\deg_T(B)$ is **0**.

C3. For any set A, construct a set $B \leq_T A''$ such that $\Sigma_1^0 = \Sigma_1^0[A] \cap \Sigma_1^0[B]$.

Computability

Sketchy Answers or Hints

E1 ans. Introduce new constant symbols c_x for $x \in \tau$ and add to the theory all sentences of the form $\phi(c_x, c_y)$ for x < y in τ . Now use Compactness.

E2 ans. Using the group operation \oplus : Let $H_5, H_7 \subseteq \omega$ be the subgroups consisting of the identity together with all elements of order 5, 7 respectively. Likewise get $K_5, K_7 \subseteq \omega$ using the group operation \otimes . Then $(H_5, \oplus) \cong$ (K_5, \otimes) , and let $f : H_5 \to K_5$ be a computable isomorphism. To get f: View (H_5, \oplus) as a vector space over the 5 element field, and choose (by recursion) a computable basis $A_5 \subseteq H_5$. Likewise let $B_5 \subseteq K_5$ be a computable basis for (K_5, \otimes) . Note that $0 \leq |A_5| = |B_5| \leq \aleph_0$. Then a computable bijection from A_5 onto B_5 generates a computable isomorphism from (H_5, \oplus) onto (K_5, \otimes) . Likewise $(H_7, \oplus) \cong (K_7, \otimes)$, and let $g : H_7 \to K_7$ be a computable isomorphism. Then f, g generate a computable isomorphism from (ω, \oplus) onto (ω, \otimes) ; To see this, note that (ω, \oplus) is the direct sum of (H_5, \oplus) and (H_7, \oplus) , and (ω, \otimes) is the direct sum of (K_5, \otimes) and (K_7, \otimes) .

E3 ans. Assume that we had such $\{A_{\alpha}: \alpha < \omega_1\}$. For each ξ , choose $B_{\xi} \subset A_{\xi+1} \setminus A_{\xi}$ with $|B_{\xi}| = 8$. Since $|[\omega]^8| = \aleph_0$, fix ξ, η such that $\xi < \xi + 1 < \eta < \eta + 1$ and $B_{\xi} = B_{\eta}$. Let $B = B_{\xi} = B_{\eta}$. Then $B \subseteq A_{\xi+1}$ and $B \cap A_{\eta} = \emptyset$, so $B \subseteq A_{\xi+1} \setminus A_{\eta}$, so $|A_{\xi+1} \setminus A_{\eta}| \ge 8$, which is a contradiction (taking $\alpha = \xi + 1$ and $\beta = \eta$).

C1 ans. Towards a contradiction, fix an infinite c.e. subset W of SD. By the Recursion Theorem, we can fix an index e for which we can control $\varphi_e(0)$. Given e, wait for an index i > e to enter W and then set $\varphi_e(0) = \varphi_i(0)$, a contradiction.

C2 ans. For each pair e, i of indices, try to force $\exists x [\Phi_e^A \neq \Phi_i^X]$ for all X in a nonempty Π_1^0 -subclass; otherwise the common value (if total) can be computed effectively.

C3 ans. Let *B* be a 2-generic relative to *A*. Suppose for some *e* and *i*, some condition σ forces that $W_e^A = W_i^B$. Then consider the set *W* of all *x*

so that for some $\tau \supseteq \sigma$, $x \in W_i^{\tau}$. If there is some $x \in W \smallsetminus W_e^A$, then there is a $\tau \supseteq \sigma$ so that τ forces $x \in W_i^B$, which is a contradiction, since τ also forces that $W_e^A = W_i^B$. If not, then $W_i^B \subseteq W \subseteq W_e^A$. Thus if $W_e^A = W_i^B$, then they are equal to the c.e. set W.