
Logic Qualifying Exam Computability August 2015

Instructions:
Do all six problems.1

If you think that a problem has been stated incorrectly, mention this to
the proctor and indicate your interpretation in your solution. In such cases,
do not interpret the problem in such a way that it becomes trivial.

If you are unable to solve a problem completely, you may receive partial
credit by weakening a conclusion or strengthening a hypothesis. In this case,
include such information in your solution, so the graders know that you know
that your solution is not complete.

If you want to ask a grader a question during the exam, write out your
question on an 81

2
by 11 sheet of paper. Give it to the proctor. The proctor

will contact one of the logic graders who will retrieve your written question,
write a response, copy the sheet of paper, and return it to the proctor.

E1. Consider a countable family F ⊆ 2ω. We say that A ⊆ ω × ω is a
listing of F if F = {A[n] : n ∈ ω}, where A[n] = {m : 〈n,m〉 ∈ A} is the nth
column of A.

(a) Construct a graph G such that a Turing degree enumerates a listing of
F if and only if it computes a presentation of G.

(b) Construct a graph H such that a Turing degree computes a listing of
F if and only if it computes a presentation of H.

E2. Let L be an uncountable language for first-order logic consisting only
of function symbols. Let A be an uncountable structure for L. If X ⊆ A, let
cl(X) be the closure of X under all the functions of the model. Call S ⊆ A
nice iff there is a countable X ⊆ S such that S ⊆ cl(X).

Assume that S ⊆ A is not nice (so it is clearly uncountable). Prove that
there is an uncountable T ⊆ S so that no uncountable subset of T is nice.

E3. Let G be a computable Gödel numbering of all Σ1 formulas in the
language of PA, so every integer represents a Σ1-formula. Define the equiv-
alence relation on ω given by G(φ) ∼ G(ψ) if PA ` ψ ↔ φ. We say that a
c.e. equivalence relation is precomplete if it is non-trivial (i.e. there are two
numbers which are not equivalent) and for any partial computable function
f there is a total computable function g so that f(n) ↓⇒ f(n) ∼ g(n). Show
that ∼ is a precomplete c.e. equivalence relation.

1Note that this is different from exams up until two years ago.



Logic Qualifying Exam Computability August 2015

Computability Theory

C1. Assume that a countable family F ⊆ 2ω contains all finite sets. Show
that a Turing degree d computes a listing of F if and only if it computes a
unique listing of F , i.e., one in which each set in F appears exactly once.

C2. We say that a c.e. equivalence relation E is universal if whenever R
is any other c.e. equivalence relation, there is a total computable function
h : ω → ω so that nRm⇔ h(n)Eh(m).

a) Show that there is a universal c.e. equivalence relation.
b) Show that the set of e so that We is a c.e. equivalence relations which

is universal is a Σ0
3-complete set.

C3. Prove that for any i ∈ ω and any B such that 0′ ≤T B, there exists A
such that A⊕WA

i ≡T A⊕ 0′ ≡T B.



Logic Qualifying Exam Computability August 2015

Sketchy Answers or Hints

E1 ans. The graphs will be “daisy graphs”. The connected components of
a daisy graph are “daisies”, which are graphs consisting of loops (the petals)
that are disjoint except that they all share one point. Say that a daisy codes
a set B ⊆ ω if it has exactly one loop of size n + 3 for each n ∈ B, and no
other loops. Note that it is equally hard to enumerate B as it is to compute
a presentation of the daisy that codes B. For (a), let G be the daisy graph
consisting of countably many daisies coding B for each B ∈ F , and no other
daisies. It is easy to see that a presentation of G allows us to enumerate a
listing of F , and vice versa. For (b), note that it is equally hard to compute
B as it is to compute a presentation of the daisy that codes B⊕B, where B
is the complement of B. So let H be the daisy graph consisting of countably
many daisies coding B ⊕B for each B ∈ F , and no other daisies.

E2 ans. Choose tξ ∈ S for ξ < ω1 such that tξ /∈ cl({tη : η < ξ}). Then,
let T = {tξ : ξ < ω1}.

E3 ans. Let D(x, y) be a first-order formula defining the function which
sends G(φ) to the (usual) Gödel code for G−1(f(G(φ))). Then consider the
function g(n) = ∃m(G(D(n,m)) ∧ Tr∃1(m)). Check this works.

C1 ans. The result is folklore. The proof sketch below is taken from
“Generic Muchnik reducibility and presentations of fields” by Downey, Green-
berg, and Miller.

This is a finite injury construction. Let B list the sets in F , possibly with
repetitions. We compute a unique listing A of the same collection of sets.
At any given stage in the construction of A, only finitely many values (of
finite columns) of the listing will have been determined. Uniqueness will be
a global requirement. In addition, we have requirements of the form

Rn : (∃m) A[m] = B[n].

To meet R0, we let A[0] copy B[0] and restrain lower priority strategies from
affecting A[0]. For n > 0, the strategy for Rn is initialized with a list



Logic Qualifying Exam Computability August 2015

A[0], . . . , A[r] of columns of the listing A that are restrained by higher pri-
ority requirements. The strategy waits for a stage at which it sees that
B[n] is different from how each of A[0], . . . , A[r] have been defined. Say that
such a stage is found. The strategy for Rn acts as follows: Let m be large
enough that A[m] is currently undefined on all values. The strategy declares
that A[m] will copy B[n] (which will happen unless Rn is later injured). It
restrains A[0], . . . , A[m] and reinitializes all lower priority requirements (en-
suring that they will respect this restraint and injuring any that have already
acted). Finally, the strategy declares each of A[r+1], . . . , A[m−1] to be distinct
finite sets (hence in F) different from each of A[0], . . . , A[r] and A[m].

C2 ans. Fix a computable enumeration {Ri}inω of all c.e. equivalence
relations by making Ri the reflexive, symmetric, transitive closure of Wi.
a) E.g., define a universal c.e. equivalence relation 〈i, x〉R〈j, y〉 by i = j and
xRiy.
b) Let I = {x | Rx is universal}. An easy calculation, using the fact that a
ceer R is universal if and only if E ≤ R, for a fixed universal ceer E, shows
that I ∈ Σ0

3, namely,

x ∈ I ⇔ (∃e)[φe is total and φe reduces E to Rx].

Next, we show that for every S ∈ Σ0
3, we have S ≤m I. Given S, fix a

universal ceer E and a c.e. class {X〈i,j〉 : i, j ∈ ω} such that

i ∈ S ⇒ (∃j)[X〈i,j〉 = ω],

i /∈ S ⇒ (∀j)[X〈i,j〉 finite],

Uniformly in i, build a ceer R such that, denoting by R[j] the ceer

x R[j] y ⇔ 〈j, x〉 R 〈j, y〉,

we have that

i ∈ S ⇒ (∃j)[R[j] = E],

i /∈ S ⇒ R yields a partition into finite sets.

This is enough to prove the claim, since a universal ceer has always (infinitely
many) infinite equivalence classes; indeed, if E, T are ceers such that E ≤ T



Logic Qualifying Exam Computability August 2015

via a computable function f , and [x]E is an undecidable equivalence class,
then so is [h(x)]T , as [x]E = f−1[[h(x)]T ].
Construction Let {Es}s∈ω be a computable approximation to E as a c.e. set,
with each Es finite, and consider a computable approximation {X〈i,j〉,s}s∈ω
to {X〈i,j〉}i,j∈ω via finite sets: We say that s+ 1 is 〈i, j〉-expansionary if

X〈i,j〉,s+1 −X〈i,j〉,s 6= ∅.

Stage by stage we define, uniformly in i, a finite set Rs so that, eventually,
R =

⋃
sR

s is our desired ceer.
Stage 0 Let R0 = ∅.
Stage s + 1 Let j be the least number ≤ s, if any, such that s + 1 is 〈i, j〉-
expansionary. Then carry out the following, with the understanding that if
there is no such j, then only item (1) applies:

1. For every k 6= j, k ≤ s, and x ≤ s, let 〈〈k, x〉, 〈k, x〉〉 ∈ Rs+1.

2. Let 〈〈j, x〉, 〈j, y〉〉 ∈ Rs+1 for every 〈x, y〉 ∈ Es.

It is straightforward to verify that if i /∈ S then every j has only finitely many
〈i, j〉-expansionary stages, so the equivalence classes of R are finite, hence R
is not universal. Otherwise, for the least j such that there are infinitely many
〈i, j〉-expansionary stages, we have that R[j] = E, hence E ≤ R, i.e., R is
universal.

C3 ans. Proceed as in the proof of the Friedberg Jump Inversion Theorem,
but instead of forcing conditions of the form

(∃σ ⊂ A)[{e}σ(e) ↓ ∨(∀τ ⊇ σ)[{e}τ (e) ↑]],

use conditions of the form

(∃σ ⊂ A)[e ∈ W σ
i ∨ (∀τ ⊇ σ)[e /∈ W τ

i ]].


