Instructions:

Do all six problems.¹

If you think that a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

If you are unable to solve a problem completely, you may receive partial credit by weakening a conclusion or strengthening a hypothesis. In this case, include such information in your solution, so the graders know that you know that your solution is not complete.

If you want to ask a grader a question during the exam, write out your question on an $8\frac{1}{2}$ by 11 sheet of paper. Give it to the proctor. The proctor will contact one of the logic graders who will retrieve your written question, write a response, copy the sheet of paper, and return it to the proctor.

- E1. Let T_0 be the theory of rooted trees of height exactly 2. That is, every model of T_0 is an acyclic graph where there is a node r so that every other node is distance ≤ 2 from r, and there is some node of distance exactly 2 from r. Characterize all of the \aleph_0 -categorical completions of T. (Recall that a theory is \aleph_0 -categorical if it has exactly one countably infinite model up to isomorphism.)
- **E2.** Prove that neither the class of connected graphs nor the class of disconnected graphs is axiomatizable in a first-order language.
- **E3.** Suppose that Γ is a map from $\mathcal{P}(\omega)$ to $\mathcal{P}(\omega)$ such that $\Gamma(A) \subseteq \Gamma(B)$ whenever $A \subseteq B$. Show that there is a set X so that $\Gamma(X) = X$.

¹Note that this is different from exams up until two years ago.

Computability Theory

- **C1.** Show that the family $\{\{n\} \oplus F \mid F \text{ is finite and } W_n \neq F\}$ has no uniform c.e. enumeration.
- **C2.** We say a set X is auto-enumerable if $(\exists i)(\forall j)$ $A = W_i^{(A \setminus \{j\}) \oplus \{j\}}$. Intuitively, this means that if you remove single elements j from A, the resulting sets still uniformly enumerate A.

Show that there exists a co-c.e. set Y that is not auto-enumerable.

C3. Let \mathcal{L} be a computable linear order with the property that every computable ordinal α embeds in an order-preserving way into \mathcal{L} . Show that ω_1^{CK} embeds in an order-preserving way into \mathcal{L} .

Sketchy Answers or Hints

E1 ans. For a height 2 tree T, define the function $f: \omega+1 \to \omega+1$ by $f_T(\alpha)$ is the number of nodes of distance 1 from r that are connected to exactly α nodes of distance 2 from r. We show that the completions of the theory of rooted trees of height exactly 2 are those with some $k \in \omega$ so $f_T(m) = 0$ whenever m > k and $m \in \omega$. Thus, given a function $f: \omega+1 \to \omega+1$ with $f|\omega$ having finite support contained in [0,k], we define a theory T_f saying the following axiom: There exists a root r so that:

- Everyone has distance ≤ 2 from r, and someone has distance 2 from r.
- IF $f_T(\omega) = 0$: There are no elements of distance 1 from r which are connected to more than k+1 elements.
- IF $f_T(\omega) \geq n$: There are n elements of distance 1 from r which are connected to more than k+1 elements.
- IF $f_T(\omega) < n$: There are not n elements of distance 1 from r which are connected to more than k+1 elements.
- For each $j \leq k$ and each $m \in \omega$ which is $\leq f(j)$, there are at least m many elements of distance 1 from r which are connected to exactly j elements of distance 2 from r
- For each $j \in \omega$ and each $m \in \omega$ which is > f(j), there are not m elements of distance 1 from r which are connected to exactly j elements of distance 2 from r.

It is straightforward to see that the axioms suffice to define an \aleph_0 -categorical theory. Thus, the theories T_f for such f are also complete (either $\Sigma_{n\in\omega} nf_T(n) < \omega$, in which case the theory has only 1 finite model or is has only infinite models and is \aleph_0 -categorical, so use downwards skolem to see completeness). Now, to see these are the only \aleph_0 -categorical completions, fix any model \mathcal{M} of our base theory (height exactly 2 trees) which fails to have a bound k as above. If \mathcal{M} does not have infinitely many elements of height 1 which are connected to infinitely many elements of height 2, then we use compactness and downward skolem to build a larger countable model. If \mathcal{M} has infinitely many elements of height 1 which are connected to infinitely many elements

of height 2, then consider the structure \mathcal{N} which you get by throwing out all of those elements of height 1 which are connected to infinitely many elements of height 2 and all the elements of height 2 connected to such elements of height 1. Now, again, apply compactness and downward skolem to build a countable elementary extension of \mathcal{N} . Now, if needed, do this countably many times. The resultant structure is exactly \mathcal{M} showing that $\mathcal{M} \equiv \mathcal{N}$, and the theory of \mathcal{M} is not \aleph_0 categorical.

E2 ans. Consider the structure (\mathbb{Z}, S) , and let \mathcal{A} be any elementary extension of (\mathbb{Z}, S) . Then $A \equiv (\mathcal{Z}, S)$, but one is connected while the other is not.

E3 ans. Define sets S_i by induction: $S_0 = \emptyset$. If λ is a limit ordinal, define $S_{\lambda} = \bigcup_{\gamma < \lambda} S_{\gamma}$. Define $S_{\beta+1} = \Gamma(S_{\beta})$. By induction, see that if $\alpha < \beta$, then $S_{\alpha} \subseteq S_{\beta}$. It is impossible for each containment at a successor stage to be proper all the way up to ω_1 , since ω is countable. Where this containment is equality, we have $S_{\alpha} = S_{\alpha+1} = \Gamma(S_{\alpha})$.

C1 ans. Suppose otherwise that the family has uniformly c.e. enumeration W. We then define a computable function f as follows: For each i, we let $\phi_{f(i)}$ be the function which searches for the first thing enumerated into W of the form $\{i\} \oplus F$. Then, on an input x, $\phi_{f(i)}(x)$ converges if and only if $x \in F$. By the recursion theorem, there must be some i so that $W_{f(i)} = W_i$. But $W_{f(i)}$ is an F so that $\{i\} \oplus F$ is in the family, thus $W_{f(i)}$ cannot equal W_i , which is a contradiction.

C2 ans. Finite injury...

C3 ans. Consider the set of computable linear orders such that every hyperarithmetical subset has a least element and that embed into \mathcal{L} . Now use overspill to give a computable linear order that is not a computable ordinal, every hyperarithmetical subset of which has a least element, and that embeds into \mathcal{L} in an order-preserving way. We know that the order type of any computable linear order that is not a well-order but which is hyperarithmetically well-ordered begins with ω_1^{CK} , so ω_1^{CK} also embeds into \mathcal{L} in an order-preserving way.