
Logic Qualifying Exam Model Theory August 2017

Instructions: Do all six problems.1

If you think that a problem has been stated incorrectly, mention this to
the proctor and indicate your interpretation in your solution. In such cases,
do not interpret the problem in such a way that it becomes trivial.

If you are unable to solve a problem completely, you may receive partial
credit by weakening a conclusion or strengthening a hypothesis. In this case,
include such information in your solution, so the graders know that you know
that your solution is not complete.

If you want to ask a grader a question during the exam, write out your
question on an 81

2
by 11 sheet of paper. Give it to the proctor. The proctor

will contact one of the logic graders who will retrieve your written question,
write a response, copy the sheet of paper, and return it to the proctor.

E1. Say that we expand first-order logic by adding second-order quantifiers
that range over finite subsets of the universe. (Incidentally, these are called
weak monadic second-order quantifiers.) Show that the resulting logic does
not admit compactness.

E2. Let T0 and T1 be computably enumerable, consistent extensions of PA
(although, T0

⋃
T1 need not be consistent). Show that there is a sentence ψ

that is independent of both T0 and T1.

E3. Call a subset X of the plane simple if and only if X is closed and
either X or its inverse X−1 is the graph of a monotonically non-increasing
or non-decreasing function. (Here, X−1 = {(y, x) : (x, y) ∈ X} and X is
monotonically non-increasing iff ∀(x1, y1), (x2, y2) ∈ X [x1 < x2 → y1 ≥ y2].)
Prove that there is a subset L of the plane of size 2ℵ0 that meets each simple
set in a set of size < 2ℵ0 . Work in ZFC.

1Note that this is different from exams before January 2014.
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Model Theory

M1. Let T be a complete theory with infinite models. Suppose T has
some model with an automorphism σ of fixed order n > 1. Let A be any
model of T . Show that there is an elementary extension B of A which has
an automorphism of order n.

M2. Let M be a saturated structure. Suppose X is a definable (with
parameters) subset of |M|n. Suppose also that X is fixed by every automor-
phism of M.

a. Show that X is definable without parameters.

b. Explain why saturation is necessary.

M3. Let T be a complete theory and let Γ(x) be a partial type. Suppose
that in every model there are only finitely many realizations of Γ(x). Show
that the number of realizations of Γ(x) is the same in every model.
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Sketchy Answers or Hints

E1 ans. We can define that a model is finite (contradicting compactness),
stating that there is a finite subset of the model containing all of its elements.

E2 ans. Call disjoint c.e. sets A and B computably inseparable if there is
no computable set C such that A is a subset of C and B is disjoint from C.
(Such a set C is called a separator.)

Given a c.e. set A, there is a Σ1-formula ϕA in the language of arithmetic
such that n ∈ A if and only if PA ` ϕA(n). (Note that it’s not true, in
general, that PA ` ¬ϕA(n) for n /∈ A. Indeed, this would mean that A is
computable.)

Let A and B be computably inseparable c.e. sets. Let ϕA and ϕB be the
corresponding formulas; more precisely, we modify ϕA(n) to say that there is
a witness that n ∈ A which is ≤ the least witness that n ∈ B. Similarly, we
modify ϕB(n) to say that there is a witness that n ∈ B which is < the least
witness that n ∈ A. Since A and B are disjoint, these modifications don’t
seem like they would do anything, but now we have:

PA ` ϕA(n)→ ¬ϕB(n) and, equivalently, PA ` ϕB(n)→ ¬ϕA(n).
Now let T0 and T1 be c.e. consistent extensions of PA. Such extensions

can make new formulas of the form ϕA(n) and ϕB(n) true. Let A0 be the
set of n such that T0 ` ϕA(n). Define A1, B0, and B1 similarly. Since
PA ` ϕB(n)→ ¬ϕA(n), we know that for every n ∈ B0, hence every n ∈ B,
T0 ` ¬ϕA(n). The same holds for T1.

Case 1: There is an n such that ϕA(n) is independent of both T0 and T1.
So we’re done.

Case 2: No such n exists. We will get a contradiction in this case. Define
a computable set C as follows. To decide if n ∈ C, enumerate all proofs
from T0 and T1 until one of the theories is first seen to prove either ϕA(n) or
¬ϕA(n). This must happen eventually because we are in case 2. If we see a
proof of ϕA(n), we put n ∈ C. Otherwise, n /∈ C.

Now note that C is a computable superset of A: If n ∈ A then both
theories prove ϕA(n), hence can’t prove ¬ϕA(n). It’s also disjoint from B:
If n ∈ B then both theories prove ¬ϕA(n), hence neither can prove ϕA(n).
Therefore, C is a computable separator of A and B, which cannot exist.
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E3 ans. Let c = 2ℵ0 . List all simple sets as {Xα : α < c}. Let L = {~vα :
α < c}, where ~vα /∈ {~vξ : ξ < α} ∪

⋃
{Xξ : ξ < α}. To see that such a ~vα

always exist, observe that if X is simple and the graph of a function, then
X meets all but countably many horizontal lines in no more than one point
and (obviously) then X meets every vertical line in no more than one point.

M1 ans. Let A be a model with an automorphism σ of order n > 1. Let
B be a |A|-saturated elementary extension of (C, σ). Then the reduct of B
to the original language is still |A|-saturated, so |A|-universal, so there is an
elementary embedding of A into it. (This can also be done in one line by
saying “Take B to be a resplendent elementary extension of A”.)

M2 ans. Let X = ϕ(M, a). Let p = tp(a). By homogeneity of a sat-
urated model, there are not two tuples b, c so that tp(b) = tp(c) = p and
ϕ(M, b) 6= ϕ(M, c). By saturation, the partial type saying tp(b) = tp(c) = p
and ϕ(M, b) 6= ϕ(M, c) is inconsistent. By compactness, there is a sin-
gle ψ ∈ p so that ψ(b) ∧ ψ(c) ∧ ϕ(M, b) 6= ϕ(M, c) is inconsistent. Let
ρ(x) = ∃yψ(y) ∧ ϕ(x, y). Then ρ defines X. — To see that saturation is
necessary, consider in the language of a single equivalence relation E the
countable structure N that for each n ∈ N ∪ {ℵ0}, there is a unique equiva-
lence class of cardinality n. Each equivalence class is definable with parame-
ters and preserved set-wise by every automorphism of N. However, the one
infinite class is not definable without parameters.

M3 ans. Use compactness to show that Γ contains an algebraic formula.
The number of realizations of an algebraic formula is determined by T . Let
ϕ(x) be an algebraic formula of minimal size (i.e. the least number of real-
izations). Show that ϕ isolates Γ, thus the number of realizations of Γ is the
same as the number of realizations of ϕ, which is determined by T .


