
Logic Qualifying Exam August 2019

Instructions: Do all six problems.1

If you think that a problem has been stated incorrectly, mention this to
the proctor and indicate your interpretation in your solution. In such cases,
do not interpret the problem in such a way that it becomes trivial.

If you are unable to solve a problem completely, you may receive partial
credit by weakening a conclusion or strengthening a hypothesis. In this case,
include such information in your solution, so the graders know that you know
that your solution is not complete.

If you want to ask a grader a question during the exam, write out your
question on an 81

2
by 11 sheet of paper. Give it to the proctor. The proctor

will contact one of the logic graders who will retrieve your written question,
write a response, copy the sheet of paper, and return it to the proctor.

E1. Prove that a consistent finitely axiomatizable (possibly incomplete)
theory T with less than continuum many completions must have a finitely
axiomatizable completion.

E2. Let A be a non-empty set and let < be a strict total order on A with
no largest element. Let C be the set of all ordinals that are isomorphic to
an unbounded subset of A. Prove that C is non-empty and that its least
element is a regular cardinal.

E3. Let L be a countable language and T an L-theory with infinite models.
Show that there is an ω1-sequence of models {Mα}α<ω1 of T of size ℵ1 so
thatMβ ≺Mα (i.e.,Mβ is a proper elementary submodel ofMα) whenever
α < β.

1Note that this is different from exams before January 2014.
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Computability Theory

C1. Show that a maximal c.e. set has minimal m-degree. (Here, a c.e.
set M is maximal if M is coinfinite but any c.e. superset of M is either
cofinite or differs from M at only finitely many elements. An m-degree a is
minimal if it is nonzero but there is no m-degree strictly between 0 and a.)

C2. Suppose S is a uniformly c.e. family of sets containing all finite sets.
Show that there is a c.e. enumeration of S which lists each set in S exactly
once. (Here, a family S of sets is uniformly c.e. if S = {An | n ∈ ω} where
An = {x | 〈n, x〉 ∈ A} for some c.e. set A; this sequence {An}n∈ω is then
called a c.e. enumeration of S.)

C3. If A is 1-generic and B is 1-generic relative to A, then A ∩ B is
1-generic.
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Sketchy Answers or Hints

E1 ans. Suppose T has no finitely axiomatizable completion. Then for any
finite set of sentences F such that T ∪ F is consistent, there is a sentence ϕ
such that both T ∪ F ∪ {ϕ} and T ∪ F ∪ {¬ϕ} are consistent. This easily
allows one to build a tree of formulas {ϕσ | σ ∈ 2<ω} such that for any path
p ∈ 2ω, T ∪ {ϕσ | σ ⊂ p} is consistent and ϕσ1 is ¬ϕσ0 for all σ.

E2 ans. C is non-empty since we can define, using Choice, a <-increasing
sequence of elements {aα}α ∈ A for ordinals α. By Replacement, this pro-
cess must stop at some ordinal α0, say, and the resulting sequence will be
unbounded in A. α0 is a limit ordinal since A has no largest element, and the
least such ordinal is regular since any sequence of ordinals contains a cofinal
subsequence of length a regular ordinal.

E3 ans. Let L′ be the language generated from L by adding new unary
predicates Pα for α < ω1. Let T ′ be the theory which says that P0 |= T
and that Pβ defines an elementary submodel of Pα whenever α < β. Check
by compactness that T ′ is consistent: For finitely many axioms, these are
witnessed by a finite elementary chain. This exists by an upward Skolem
argument starting with an infinite model of T , so T ′ is consistent. By down-
ward Skolem, we can take a model N of T ′ of size ≤ ℵ1 (the size of L′). We
now have our ω1-length elementary descending sequence with Mα defined
by Pα in N . It remains to see that each of the models has size ℵ1. For any
γ < ω1, we argue that Mγ has size ℵ1 as follows: For every δ ∈ (γ, ω1), choose
an element xδ ∈ Mδ rMδ+1. Then {xδ | δ ∈ (γ, ω1)} is a set of ℵ1 many
distinct elements, all of which are in Mγ, so Mγ is not countable. Of course,
since Mγ ⊆ N , its size cannot be larger than ℵ1.

C1 ans. Clearly, no maximal set M can be computable since otherwise its
computable complement can be split into two infinite computable subsets.
Suppose A ≤m M for some set A via some computable function f . Then the
range of f forms a c.e. set B. If M ∪B differs from M only finitely, say, B−
M = {b1, . . . , bn}, then A = f−1(ω−{b1, . . . , bn}) is computable. Otherwise,
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M ∪B is cofinite, and so by changing f at finitely many arguments, we may
assume that M ∪ B = ω. But then M ≤m A via g, where g(n) is defined as
follows: Start enumerating M and look for some m with f(m) = n. If we
see n ∈ M first then set g(n) = a, where a ∈ A is some fixed number. If we
first find some m with f(m) = n, then set g(n) = m.

C2 ans. this that S Without loss of generality, we may assume that S
contains ω, since we can simply remove a single set from the enumeration
produced, so let {An}n∈ω be any c.e. enumeration of S with A0 = ω. We
now build a c.e. enumeration {Bn}n∈ω of S and a 0′-partial computable
function f (approximated by uniformly partial computable functions fs in
the sense that f(n) ↓ = m if fs(n) = m for cofinitely many s, and f(n) is
undefined otherwise). We meet the following requirements:

(1) If An = An′ for some n′ < n then f(n) is undefined.

(2) If An 6= An′ for all n′ < n then either f(n) is defined and An = Bf(n);
or An is of the form [0, x] for some x, and there is m ∈ ω− ran(f) such
that An = Bm.

(3) Any set Bm with m /∈ ran(f) is of the form [0, x] for some x.

(4) For any set of the form [0, x] for some x, there is a unique m with
Bm = [0, x].

Now, at stage s = 0, we define B0 = ω and f(0) = f0(0) = 0, while f0(n) is
undefined for all n > 0. At a stage s+ 1, we perform the following steps:

Step 1: If fs(n) is defined and for some n′ < n,

An′,s � (fs(n) + 1) = An,s � (fs(n) + 1)

(i.e., if n does not appear to be the least index for An), then let fs+1(n)
be undefined (and keep fs(n) permanently out of the range of f from
now on).

Step 2: If fs(n) is defined, n > 0, and, for some s′ < s and some m ∈
ran(fs′)− ran(fs),

Bm,s � (fs(n) + 1) = Bfs(n),s � (fs(n) + 1)
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(i.e., if the set Bm seems to appear twice in the B-sequence of sets,
including once as a set with index no longer in the range of f), then
let fs+1(n) be undefined (and keep fs(n) permanently out of the range
of f from now on).

Step 3: If fs(n) is defined but fs+1(n) is undefined (i.e., if f(n) just became
undefined via Step 1 or Step 2), then for each such n (in increasing
order of n), set

Bfs(n) = Bfs(n),s+1 = [0, x]

for some x larger than any number mentioned thus far in the construc-
tion.

Step 4: If fs(n) is undefined for n ≤ s, then for each such n (in increasing
order of n), let fs+1(n) be the least m not in

⋃
s′≤s ran(fs′) and not

equal to fs+1(n
′) for some n′ < n.

Step 5: If fs+1(n) is defined then let Bfs+1(n),s+1 = An,s+1.

To verify that this works, we first note that since for each m, there is at most
one n such that fs(n) = m at some stage s, Step 5 can be carried out since
no number has to be removed from Bfs+1(n) to carry out Step 5. Similarly,
since x is chosen large in Step 3, this step can be carried out without removing
numbers from Bfs(n).

We now verify the satisfaction of the above requirements:
(1) If An = An′ for some n′ < n then fs(n) is undefined for infinitely

many s by Step 1.
(2) If An 6= An′ for all n′ < n then f(n) becomes undefined via Step 1

at most finitely often. If f(n) becomes undefined via Step 2 for the same m
infinitely often, then An = Bm as desired. Otherwise, since An is computably
enumerable, An,s = [0, x] at various stages s for larger and larger x; thus
An = ω, and so n = 0 and Step 2 never applies to n.

(3) This is immediate by Step 4.
(4) Fix x. Steps 2 and 4 ensure that there is at most one m such that

Bm = [0, x]. Fix n least such that An = [0, x]. Then either f(n) is defined
and Bf(n) = [0, x]; or else we can argue as in (2) above that there is some m
such that Bm = [0, x].

C3 ans. Let W ⊆ 2<ω be a c.e. set that contains no prefix of A ∩ B.
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Consider the A-c.e. set of strings

V = {σ ∈ 2<ω | (∃τ ≺ A) |τ | = |σ| and τ ∩ σ ∈ W}.

Since B is 1-generic relative to A, it either meets or avoids V . If it meets V
at σ as witnessed by τ ≺ A, then τ∩σ is a prefix of A∩B in W . Therefore, B
avoids V ; say, that σ ≺ B has no extension in V . Now consider the c.e. set
of strings

U = {τ ∈ 2<ω | (∃σ′ � σ) |σ′| = |τ | and τ ∩ σ′ ∈ W}.

If A has a prefix τ ∈ U , then the witnessing σ′ would be an extension of σ
in V , which does not exist. But A is 1-generic, so A avoids U : There is some
τ ≺ A such that no extension of τ is in U . Fix σ′ ≺ B such that |σ′| = |τ |.
Then τ ∩ σ′ is a prefix of A ∩ B with no extension in W , otherwise τ would
have an extension in U , hence A ∩ B avoids W . But W ⊆ 2<ω was an
arbitrary c.e. set that contains no prefix of A ∩B, so A ∩B is 1-generic.


