Instructions: Do all six problems.¹

If you think that a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

If you are unable to solve a problem completely, you may receive partial credit by weakening a conclusion or strengthening a hypothesis. In this case, include such information in your solution, so the graders know that you know that your solution is not complete.

If you want to ask a grader a question during the exam, write out your question on an $8\frac{1}{2}$ by 11 sheet of paper. Give it to the proctor. The proctor will contact one of the logic graders who will retrieve your written question, write a response, copy the sheet of paper, and return it to the proctor.

- **E1.** Prove that a consistent finitely axiomatizable (possibly incomplete) theory T with less than continuum many completions must have a finitely axiomatizable completion.
- **E2.** Let A be a non-empty set and let < be a strict total order on A with no largest element. Let C be the set of all ordinals that are isomorphic to an unbounded subset of A. Prove that C is non-empty and that its least element is a regular cardinal.
- **E3.** Let \mathcal{L} be a countable language and T an \mathcal{L} -theory with infinite models. Show that there is an ω_1 -sequence of models $\{\mathcal{M}_{\alpha}\}_{\alpha<\omega_1}$ of T of size \aleph_1 so that $\mathcal{M}_{\beta} \prec \mathcal{M}_{\alpha}$ (i.e., \mathcal{M}_{β} is a proper elementary submodel of \mathcal{M}_{α}) whenever $\alpha < \beta$.

¹Note that this is different from exams before January 2014.

Computability Theory

- C1. Show that a maximal c.e. set has minimal m-degree. (Here, a c.e. set M is maximal if M is coinfinite but any c.e. superset of M is either cofinite or differs from M at only finitely many elements. An m-degree \mathbf{a} is minimal if it is nonzero but there is no m-degree strictly between $\mathbf{0}$ and \mathbf{a} .)
- **C2.** Suppose S is a uniformly c.e. family of sets containing all finite sets. Show that there is a c.e. enumeration of S which lists each set in S exactly once. (Here, a family S of sets is uniformly c.e. if $S = \{A_n \mid n \in \omega\}$ where $A_n = \{x \mid \langle n, x \rangle \in A\}$ for some c.e. set A; this sequence $\{A_n\}_{n \in \omega}$ is then called a c.e. enumeration of S.)
- **C3.** If A is 1-generic and B is 1-generic relative to A, then $A \cap B$ is 1-generic.

Sketchy Answers or Hints

E1 ans. Suppose T has no finitely axiomatizable completion. Then for any finite set of sentences F such that $T \cup F$ is consistent, there is a sentence φ such that both $T \cup F \cup \{\varphi\}$ and $T \cup F \cup \{\neg\varphi\}$ are consistent. This easily allows one to build a tree of formulas $\{\varphi_{\sigma} \mid \sigma \in 2^{<\omega}\}$ such that for any path $p \in 2^{\omega}$, $T \cup \{\varphi_{\sigma} \mid \sigma \subset p\}$ is consistent and $\varphi_{\sigma 1}$ is $\neg \varphi_{\sigma 0}$ for all σ .

E2 ans. C is non-empty since we can define, using Choice, a <-increasing sequence of elements $\{a_{\alpha}\}_{\alpha} \in A$ for ordinals α . By Replacement, this process must stop at some ordinal α_0 , say, and the resulting sequence will be unbounded in A. α_0 is a limit ordinal since A has no largest element, and the least such ordinal is regular since any sequence of ordinals contains a cofinal subsequence of length a regular ordinal.

E3 ans. Let \mathcal{L}' be the language generated from \mathcal{L} by adding new unary predicates P_{α} for $\alpha < \omega_1$. Let T' be the theory which says that $P_0 \models T$ and that P_{β} defines an elementary submodel of P_{α} whenever $\alpha < \beta$. Check by compactness that T' is consistent: For finitely many axioms, these are witnessed by a finite elementary chain. This exists by an upward Skolem argument starting with an infinite model of T, so T' is consistent. By downward Skolem, we can take a model \mathcal{N} of T' of size $\leq \aleph_1$ (the size of \mathcal{L}'). We now have our ω_1 -length elementary descending sequence with \mathcal{M}_{α} defined by P_{α} in \mathcal{N} . It remains to see that each of the models has size \aleph_1 . For any $\gamma < \omega_1$, we argue that M_{γ} has size \aleph_1 as follows: For every $\delta \in (\gamma, \omega_1)$, choose an element $x_{\delta} \in M_{\delta} \setminus M_{\delta+1}$. Then $\{x_{\delta} \mid \delta \in (\gamma, \omega_1)\}$ is a set of \aleph_1 many distinct elements, all of which are in M_{γ} , so M_{γ} is not countable. Of course, since $M_{\gamma} \subseteq N$, its size cannot be larger than \aleph_1 .

C1 ans. Clearly, no maximal set M can be computable since otherwise its computable complement can be split into two infinite computable subsets. Suppose $A \leq_m M$ for some set A via some computable function f. Then the range of f forms a c.e. set B. If $M \cup B$ differs from M only finitely, say, $B - M = \{b_1, \ldots, b_n\}$, then $A = f^{-1}(\omega - \{b_1, \ldots, b_n\})$ is computable. Otherwise,

 $M \cup B$ is cofinite, and so by changing f at finitely many arguments, we may assume that $M \cup B = \omega$. But then $M \leq_m A$ via g, where g(n) is defined as follows: Start enumerating M and look for some m with f(m) = n. If we see $n \in M$ first then set g(n) = a, where $a \in A$ is some fixed number. If we first find some m with f(m) = n, then set g(n) = m.

C2 ans. this that S Without loss of generality, we may assume that S contains ω , since we can simply remove a single set from the enumeration produced, so let $\{A_n\}_{n\in\omega}$ be any c.e. enumeration of S with $A_0 = \omega$. We now build a c.e. enumeration $\{B_n\}_{n\in\omega}$ of S and a $\mathbf{0}'$ -partial computable function f (approximated by uniformly partial computable functions f_s in the sense that $f(n) \downarrow = m$ if $f_s(n) = m$ for cofinitely many s, and f(n) is undefined otherwise). We meet the following requirements:

- (1) If $A_n = A_{n'}$ for some n' < n then f(n) is undefined.
- (2) If $A_n \neq A_{n'}$ for all n' < n then either f(n) is defined and $A_n = B_{f(n)}$; or A_n is of the form [0, x] for some x, and there is $m \in \omega \operatorname{ran}(f)$ such that $A_n = B_m$.
- (3) Any set B_m with $m \notin \operatorname{ran}(f)$ is of the form [0, x] for some x.
- (4) For any set of the form [0,x] for some x, there is a unique m with $B_m = [0,x]$.

Now, at stage s = 0, we define $B_0 = \omega$ and $f(0) = f_0(0) = 0$, while $f_0(n)$ is undefined for all n > 0. At a stage s + 1, we perform the following steps:

Step 1: If $f_s(n)$ is defined and for some n' < n,

$$A_{n',s} \upharpoonright (f_s(n)+1) = A_{n,s} \upharpoonright (f_s(n)+1)$$

(i.e., if n does not appear to be the least index for A_n), then let $f_{s+1}(n)$ be undefined (and keep $f_s(n)$ permanently out of the range of f from now on).

Step 2: If $f_s(n)$ is defined, n > 0, and, for some s' < s and some $m \in \operatorname{ran}(f_{s'}) - \operatorname{ran}(f_s)$,

$$B_{m,s} \upharpoonright (f_s(n)+1) = B_{f_s(n),s} \upharpoonright (f_s(n)+1)$$

(i.e., if the set B_m seems to appear twice in the B-sequence of sets, including once as a set with index no longer in the range of f), then let $f_{s+1}(n)$ be undefined (and keep $f_s(n)$ permanently out of the range of f from now on).

Step 3: If $f_s(n)$ is defined but $f_{s+1}(n)$ is undefined (i.e., if f(n) just became undefined via Step 1 or Step 2), then for each such n (in increasing order of n), set

$$B_{f_s(n)} = B_{f_s(n),s+1} = [0,x]$$

for some x larger than any number mentioned thus far in the construction.

Step 4: If $f_s(n)$ is undefined for $n \leq s$, then for each such n (in increasing order of n), let $f_{s+1}(n)$ be the least m not in $\bigcup_{s' \leq s} \operatorname{ran}(f_{s'})$ and not equal to $f_{s+1}(n')$ for some n' < n.

Step 5: If $f_{s+1}(n)$ is defined then let $B_{f_{s+1}(n),s+1} = A_{n,s+1}$.

To verify that this works, we first note that since for each m, there is at most one n such that $f_s(n) = m$ at some stage s, Step 5 can be carried out since no number has to be removed from $B_{f_{s+1}(n)}$ to carry out Step 5. Similarly, since x is chosen large in Step 3, this step can be carried out without removing numbers from $B_{f_s(n)}$.

We now verify the satisfaction of the above requirements:

- (1) If $A_n = A_{n'}$ for some n' < n then $f_s(n)$ is undefined for infinitely many s by Step 1.
- (2) If $A_n \neq A_{n'}$ for all n' < n then f(n) becomes undefined via Step 1 at most finitely often. If f(n) becomes undefined via Step 2 for the same m infinitely often, then $A_n = B_m$ as desired. Otherwise, since A_n is computably enumerable, $A_{n,s} = [0, x]$ at various stages s for larger and larger s; thus s0 and so s1 and so s2 never applies to s3.
 - (3) This is immediate by Step 4.
- (4) Fix x. Steps 2 and 4 ensure that there is at most one m such that $B_m = [0, x]$. Fix n least such that $A_n = [0, x]$. Then either f(n) is defined and $B_{f(n)} = [0, x]$; or else we can argue as in (2) above that there is some m such that $B_m = [0, x]$.

C3 ans. Let $W \subseteq 2^{<\omega}$ be a c.e. set that contains no prefix of $A \cap B$.

Consider the A-c.e. set of strings

$$V = \{ \sigma \in 2^{<\omega} \mid (\exists \tau \prec A) \mid \tau \mid = |\sigma| \text{ and } \tau \cap \sigma \in W \}.$$

Since B is 1-generic relative to A, it either meets or avoids V. If it meets V at σ as witnessed by $\tau \prec A$, then $\tau \cap \sigma$ is a prefix of $A \cap B$ in W. Therefore, B avoids V; say, that $\sigma \prec B$ has no extension in V. Now consider the c.e. set of strings

$$U = \{ \tau \in 2^{<\omega} \mid (\exists \sigma' \succeq \sigma) \mid \sigma' \mid = |\tau| \text{ and } \tau \cap \sigma' \in W \}.$$

If A has a prefix $\tau \in U$, then the witnessing σ' would be an extension of σ in V, which does not exist. But A is 1-generic, so A avoids U: There is some $\tau \prec A$ such that no extension of τ is in U. Fix $\sigma' \prec B$ such that $|\sigma'| = |\tau|$. Then $\tau \cap \sigma'$ is a prefix of $A \cap B$ with no extension in W, otherwise τ would have an extension in U, hence $A \cap B$ avoids W. But $W \subseteq 2^{<\omega}$ was an arbitrary c.e. set that contains no prefix of $A \cap B$, so $A \cap B$ is 1-generic.