Instructions: Do all six problems.

If you think that a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

If you are unable to solve a problem completely, you may receive partial credit by weakening a conclusion or strengthening a hypothesis. In this case, include such information in your solution, so the graders know that you know that your solution is not complete.

If you want to ask a grader a question during the exam, write out your question on an $8\frac{1}{2}$ by 11 sheet of paper. Give it to the proctor. The proctor will contact one of the logic graders who will retrieve your written question, write a response, copy the sheet of paper, and return it to the proctor.

- **E1.** (Work in ZF, i.e., without the axiom of choice.) Show the following:
 - 1. There is a function mapping $\mathcal{P}(\omega)$ onto ω_1 .
 - 2. If $\mathcal{P}(\omega)$ is a countable union of countable sets, then $\mathrm{cf}(\omega_1) = \omega$.
- **E2.** Let M be a model of PA that is not elementarily equivalent to $(\mathbb{N}, +, \cdot)$. Show that there is an infinite element of M that is definable.
- **E3.** Let \mathcal{C} be a class of L-structures (for some signature L) defined as follows: there is a set T of L-formulas with free variables among $\{x_1, \ldots, x_k\}$ such that if \mathfrak{A} is an L-structure, then $\mathfrak{A} \in \mathcal{C}$ if and only if there is a tuple $\vec{a} \in A^k$ such that for every $\varphi \in T$ we have that $\mathfrak{A} \models \varphi[\vec{a}]$. Prove that if \mathcal{C} is elementary, then it is axiomatized by the collection of sentences of the form $(\exists x_1 \ldots x_k) \bigwedge_{\varphi \in T'} \varphi$, where T' ranges over finite subsets of T.

Computability Theory

C1. A pair of disjoint c.e. sets A and B are effectively inseparable if there is a partial computable function ψ (called a productive function for the pair) such that for every pair of c.e. indices u, v,

$$A \subseteq W_u, B \subseteq W_v$$
, and $W_u \cap W_v = \emptyset \Rightarrow \psi(u, v) \downarrow$ and $\psi(u, v) \notin W_u \cup W_v$.

Show that every effectively inseparable pair has a total productive function.

An infinite set X is r-cohesive (recursively cohesive) if for every computable set C, either $X \subseteq^* C$ or $X \subseteq^* \overline{C}$.

- C2. Prove that if X is r-cohesive, then it has hyperimmune degree (i.e., X computes a function that is not dominated by any computable function).
- C3. Prove that if D is high (i.e., $D' \geq_T \emptyset''$), then D computes an r-cohesive set. Hint. Since D is high, there are $\Delta_2^0[D]$ approximations to the sets $\{e: \varphi_e \text{ is total and } 0\text{--}1 \text{ valued}\}$ and $\{e: (\exists^\infty n) \varphi_e(n) = 1\}$.

Sketchy Answers or Hints

E1 ans.

- 1. Since $\omega \approx \omega \times \omega$, we have $\mathcal{P}(\omega) \approx \mathcal{P}(\omega \times \omega)$. So it is enough to define a surjective function $h \colon \mathcal{P}(\omega \times \omega) \to \omega_1$. Fix $R \in \mathcal{P}(\omega \times \omega)$. If (ω, R) is a well-order, let h(R) be its order-type. Otherwise, let h(R) = 0. Every countable well-order is of the form (ω, R) for some $R \in \mathcal{P}(\omega \times \omega)$, so h is surjective.
- 2. Suppose $\mathcal{P}(\omega) = \bigcup_{i \in \omega} X_i$, where each X_i is countable. Let $f : \mathcal{P}(\omega) \to \omega_1$ be the surjective function that we proved to exist in the first part. There are two cases. If some $f[X_i]$ is cofinal in ω_1 , then it witnesses that $\mathrm{cf}(\omega_1) \leq \omega$. Otherwise, each $\alpha_i = \sup_{n \in X_i} f(n)$ is less than ω_1 . But then $\{\alpha_i\}_{i \in \omega}$ is countable and witnesses that $\mathrm{cf}(\omega_1) \leq \omega$. (It is clear that $\mathrm{cf}(\omega_1) \geq \omega$.)

E2 ans. Let φ be a formula (in prenex normal form) of lowest quantifier-complexity so that $M \models \varphi$ and \mathbb{N} does not. We observe that φ must begin with an \exists . In particular, φ cannot begin with a \forall . Otherwise, $\mathbb{N} \models \neg \varphi$, and $\neg \varphi = \exists x \psi$ where ψ is of lower quantifier-complexity. But then $\mathbb{N} \models \psi(x)$ for some x. Let $\hat{x} = 1 + 1 + \cdots + 1$ (i.e. the term which represents the element x). Then $\mathbb{N} \models \psi(\hat{x})$. But then this is a sentence of lower quantifier-complexity than φ , and thus $M \models \psi(\hat{x})$. Thus $M \models \varphi$. So, φ must be \exists_n for some n. Let $\varphi = \exists x \psi$. Let $n \in M$ be the least witness for n. The induction axioms in PA give us that there is a least witness. This witness is definable. We need only conclude that it is infinite. Suppose towards a contradiction that n is finite. Then n is represented by a term n is n that n is finite. Then n is of lower quantifier-complexity than n is one conclude that n is of lower quantifier-complexity than n is conclude that n is of lower quantifier-complexity than n is conclude that n is of lower quantifier-complexity than n is conclude that n is of lower quantifier-complexity than n is conclude that n is of lower quantifier-complexity than n is conclude that n is of lower quantifier-complexity.

E3 ans. First note that if $\varphi(x_1, \ldots, x_k)$ is an L-formula, ψ is an L-formula, and c_1, \ldots, c_k are constants not in L, then $\varphi(c_1, \ldots, c_k) \models \psi$ if and only if $(\exists x_1 \cdots \exists x_k) \varphi(x_1, \ldots, x_k) \models \psi$. Let $T(\vec{c}) = \{\varphi(x_1/c_1, \ldots, x_k/c_k) : \varphi \in T\}$, where c_1, \ldots, c_k are new constants. The L-reducts of models of $T(\vec{c})$ are in C,

hence if ψ is a sentence that is true in all models from \mathcal{C} then $T(\vec{c}) \models \psi$. By compactness there is a finite set $T' \subseteq T$ such that $T'(\vec{c}) \models \psi$, or equivalently $(\exists x_1 \cdots \exists x_k) \bigwedge_{\varphi \in T'} \varphi \models \psi$.

C1 ans. Let f and g be computable functions such that $W_{f(u)} = W_u \cup A$ and $W_{g(v)} = W_v \cup B$. Now wait until $\psi(f(u), g(v))$ converges or $W_{f(u)} \cap W_{g(v)} \neq \emptyset$, one of which must occur by assumption. Then set p(u, v) to equal $\psi(f(u), g(v))$ or 0, respectively.

C2 ans. We prove the contrapositive. Consider the X-computable function g such that g(n) is the least element of X that is $\geq n$. If X does not have hyperimmune degree, then there is a computable function f that majorizes g (i.e., $(\forall n) \ g(n) \leq f(n)$). Now let F(0) = 0 and F(n+1) = f(F(n)) + 1. So for each n, there is an element of X in the interval [F(n), F(n+1)), namely g(F(n)). Let

$$C = \bigcup_{n \in \omega} \left[F(2n), F(2n+1) \right).$$

It should be clear that C is computable, but that $X \cap C$ and $X \cap \overline{C}$ are both infinite. Hence X isn't r-cohesive.¹

C3 ans. First, we construct $\Delta_2^0[D]$ approximations to indices e_0, e_1, e_2, \ldots , such that

- φ_{e_i} is the characteristic function of an infinite computable set X_i ,
- $X_0 \supseteq X_1 \supseteq X_2 \supseteq \cdots$,
- If φ_i is the characteristic function of a computable set C, then either $X_i \subseteq C$ or $X_i \subseteq \overline{C}$.

To find $e_{i,s}$ at stage s, we assume that we have already determined $e_{i-1,s}$ (where e_{-1} is a fixed index for the characteristic function of ω). If we are not currently guessing that φ_i is total and 0–1 valued, then let $e_{i,s} = e_{i-1,s}$. Otherwise, check our current guess as to whether $X_{i-1,s} \cap C$ is infinite, where

¹Actually, if X is r-cohesive, then X is a hyperimmune *set*. This is because we can compute a function that majorizes g from any function that majorizes the principal function of X.

 φ_i is the characteristic function of C and $\varphi_{e_{i-1,s}}$ is the characteristic function of $X_{i-1,s}$. If so, let $e_{i,s}$ be an index of the characteristic function of $X_{i-1,s} \cap C$. Otherwise, let $e_{i,s}$ be an index for $X_{i-1,s} \cap \overline{C}$. Note that for all i, as long as we choose indices consistently, $e_i = \lim_{s \to \infty} e_{i,s}$ exists. These indices clearly satisfy our requirements.

Now, we are ready to define the r-cohesive set X. For each s, search for a stage $t \geq s$ and an $n \geq s$ such that for all $i \leq s$, either $\varphi_{e_i,s,t}(n) \downarrow = 1$ or $e_{i,s} \neq e_{i,t}$. Note that this search must be successful. Put n into X. Note that $X \leq_T D$ because n cannot be put into X after stage n of the enumeration of X. Also note that $X \subseteq^* X_i$ because all of our guesses eventually stabilize. So if C is computable with characteristic function φ_i , then either $X \subseteq^* X_i \subseteq C$ or $X \subseteq^* X_i \subseteq \overline{C}$.