Logic Qualifying Exam August 2020

Instructions: Do all six problems.

If you think that a problem has been stated incorrectly, mention this to
the proctor and indicate your interpretation in your solution. In such cases,
do not interpret the problem in such a way that it becomes trivial.

If you are unable to solve a problem completely, you may receive partial
credit by weakening a conclusion or strengthening a hypothesis. In this case,
include such information in your solution, so the graders know that you know
that your solution is not complete.

If you want to ask a grader a question during the exam, write out your
question on an 8% by 11 sheet of paper. Give it to the proctor. The proctor
will contact one of the logic graders who will retrieve your written question,
write a response, copy the sheet of paper, and return it to the proctor.

E1. Show that the complement of an elementary class C is elementary if and
only if C is finitely axiomatizable.

E2. Show that < is not definable in (N,0,5), where S is the successor
function on N.

E3. Show that there are at least continuum many pairwise non-isomorphic
densely ordered subsets of R without end-points.
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Computability Theory

C1. A set X is CEA (c.e. in and above) if there is a Y <p X (in particular,
Y #r X) such that X is Y-c.e. Prove that every 1l-generic is CEA. Hint.
Consider the set of pairs (i, j) where 7 lies in the 1-generic but the pair itself
does not.

C2. An oracle L is peculiar! if there is an (/-computable function g such
that if ®% is total computable then @) = ®L (no assumption is made on
g(e) if ®L is partial or not computable).

1. Prove that every peculiar set is low.
2. Prove that there is a noncomputable peculiar set.
C3. A relation R C w? is a ceer (c.e. equivalence relation) if it is c.e. and an

equivalence relation. Prove that there is a ceer with infinitely many classes
but with no c.e. infinite set of pairwise inequivalent elements.

INot standard nomenclature.
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M1.

Model Theory

Suppose M is countable and every countable elementary extension of

M is isomorphic to M. Show that M must be saturated.

M2. Show that no infinite field is Ny-categorical.

Ma3. Let £ be a relational language. Let ¢ be a universal L£-sentence.

a)

Show that if ¢ has an infinite model, then ¢ has a model M with
universe {a, | n € w} so that (a, | n € w) is an indiscernible sequence

in M.

Let ¢ := Vx;...Vx,1) where ¢ is quantifier-free. Show that (¢ has an
infinite model if and only if ¢ has a model N' = {ay, ..., a;,} of size > n
so that (aq,...,an,) is atomic-indiscernible. That is, for every relation
symbol R € L, and tuples of indices (i1, - ,i) and (ji,- -, jx) of the
same order-type,

N):R(ail,...,aik) <~ N):R(ajl,...,ajk).

Let £ be a recursive language. Deduce that the set of universal L-
formulas ¢ which have an infinite model is a recursive set.
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Sketchy Answers or Hints

E1 ans. If C can be axiomatized by a finite set, then it can be axiomatized
by the conjunction ¢ of the sentences in the finite set, and so the complement
of C is axiomatized by {—¢}. — Conversely, suppose the complement of C
is axiomatized by a set B; and that C is axiomatized by a set A. Then
AU B is inconsistent, so by compactness contains a finite inconsistent subset
Ao U By with Ag € A and By C B. Then A, axiomatizes C; else there is a
model satisfying Ay in the complement of C which therefore also satisfies By,
a contradiction.

E2 ans. Suppose the formula ¢(z,y) defines < in (N, 0, S). By compactness,
there is a model M of Th(N, 0, S) containing two elements a and b such that
for all n € N, S™(0) # a,b; S"(a) # b; and S™(b) # a. Now in (N,0,.5) and
thus also in M, every element has an S-successor, and every element except
for 0 has an S-predecessor; so in M, both a and b are contained in distinct Z-
chains given by S. Without loss of generality, assume M = ¢(a, b), so there
is an expansion of M in which a < b. Let f be the bijection on M mapping a
to b and vice versa, extending this to a map swapping the Z-chains of @ and b,
and leaving all other elements of M fixed. Then f is a {0, S}-isomorphism
of M which reverses the order of a and b, a contradiction.

E3 ans. We code an arbitrary subset S C N into a dense subset of R as
follows: Let I = {0}U{z € (0,1] | 27@*) <2 <27 — 1 € Q}, and let
J={1l—=x|x €I}, soboth I and J are dense subsets of [0, 1]. Then the
order type of

RszR_U(U{m+x|x€[}>u(U{m+x|x€J}>

mesS meS

uniquely determines S, and each Rg is densely ordered without endpoints.

C1 ans. Fix a pairing function (-,-) which is computable, satisfies i,j <
(1,7), and has computable coinfinite range. (For example we could define
(i,j) = 2'37.) Let G be a l-generic. Define Y := {(i,j) ¢ G | i € G}.
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Clearly Y is computable in G. To show that GG is Y-c.e., observe that i € G
if and only if there is some j such that (i,j) € Y. (By immunity of G, for
each i, {(i,j) | j € w} intersects the complement of G.) To show that G
is not computable in Y, think about how one would construct G in order
to ensure that Y (defined from G as above) does not compute G. For each
o € 2<N define o’ € 2°l by ¢/(m) = 1 if and only if m = (i, j) for some i, j,
o(m) =0, and o(i) = 1. Observe that if o is an initial segment of G, then
o’ is an initial segment of Y. Assume towards a contradiction that ®¥ = G.
Consider the recursive set S of o such that 7" and o are incompatible. Since
dY = @, no initial segment of G lies in S. By genericity, there is some initial
segment 7 of G with no extension in S. But we can extend 7 to a string
in S as follows. By immunity of G, there is some n > |7| such that n does
not lie in the range of the pairing function and n ¢ G. Since ®¥ = G, there
is some o extending 7 such that ®7'(n) |= o(n) = 0. We define a string
p € 217l such that p(n) = 1 and p’ = ¢’ by iteratively flipping certain Os in o
as follows. Begin by defining p(n) = 1. In order to ensure that p'({n,j)) =0
(= d'({n,j))), we define p((n,7)) = 1 for each j. In general, whenever we
define p(m) = 1 # 0 = o(m), we will define p((m,j)) = 1. One can show
that p’ = ¢’ and p extends 7. Hence p is an extension of 7 which lies in S,
contradiction.

C2 ans.

1. Let L be peculiarly low as witnessed by g. Using the parameter theorem
define a total computable function f so that <I>]Lc(e)(s) =0ife ¢ L, and
1 otherwise. (' can answer whether @47 (s) =1 for some s.

2. Build L = |, 0, using a ('-computable initial segment construction:
suppose that we have built o,, and let n = (e, ). Search for 7o, 71 = oy,
such that for some m we have ®7°(m) |# ®7'(m) |. Define 0,1 as 7
or 7 ensuring ¢;(m) # ®In+1(m) (if p;(m) is at all defined). If there
are no such 7y and 7; then define 0,,,1 = 0,. This is a (/-computable
construction, so if ®L is computable, then (' can find the least i such
that at stage (e, ), no splitting was found and then compute an index
for ®L given O(e,i)-

C3 ans. For each e, let ), be the requirement that either W, is finite or W,
contains distinct numbers which are equivalent. Arrange the requirements
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Qo, @1, ... in order of priority. We begin the construction with the empty
ceer, i.e., each number is in its own equivalence class. At stage s, a require-
ment (), is satisfied if W, contains distinct numbers which are equivalent. A
requirement (), requires attention if it is not satisfied and there are distinct
numbers x,y € W, s whose equivalence classes are not restrained by require-
ments of higher priority. We act for the requirement (). of highest priority
which requires attention by collapsing = and y into the same equivalence
class. Then @, restrains the equivalence class of z (and y). This completes
the construction at stage s. We show that the resulting ceer satisfies every
Q.. Suppose W, is infinite. We claim that we eventually act for @), hence Q.
will be satisfied. Each requirement of priority higher than (). acts at most
once. Go to a stage t such that no requirement of higher priority acts after
stage t. At most e many equivalence classes are restrained by requirements
of higher priority. These classes cannot grow after stage t, so since W, is in-
finite, there will eventually be distinct numbers x,y € W, whose equivalence
classes are not restrained by requirements of higher priority. Then we will
act for Q). (if we have not already done so). Finally, we show that there are
infinitely many equivalence classes. In fact each class is finite: the sequence
of collapses that forms a single class defines a sequence of requirements of
higher and higher priority.

M1 ans. Every n-type is realized in a countable model which is an ele-
mentary extension of M. So, every n-type is realized in M. This is not yet
enough to see that M is saturated, but this says that there are only countably
many n-types for every n. Thus there is a countable saturated model. By
universality for saturated models, it is an elementary extension of M. But
then it is isomorphic to M, so M is saturated.

M2 ans. Let F' be an infinite field. By the Ryll-Nardzewski theorem, it suf-
fices to show that there are infinitely many n-types for some n. Suppose there
is some non-algebraic element z. Then the pairs (z, z), (z, 2%), (z,2?),. .. all
have different 2-types. Thus we may assume that F' has no non-algebraic el-
ement. But each algebraicity (i.e. a polynomial of degree k) has only finitely
many realizations (at most k). Thus, we can choose a sequence of elements
x1,To, X3, ... no two of which are algebraic via the same polynomial. These
have distinct 1-types.



Logic Qualifying Exam August 2020

M3 ans.

a)

Take N to be a really big model of ¢ (upward Lowenheim—Skolem) and
use Erdés—Rado to take an indiscernible subsequence. Since N' modeled
v, so does every submodel. Since L is relational, every subset is a
submodel. Alternatively, let 7" be a theory saying ¢ along with (¢;)cw
is indiscernible (this is definable via a first order schema). Construct a
model N = T by compactness, using finite Ramsey in the given infinite
model to find tuples satisfying finite parts of T. Let a; be named by
¢; in N. Again, since N/ models ¢, we can drop down to {a; | i € w}
modeling ¢.

Going from finite to infinite: Restrict to the sublanguage £’ generated
by relations appearing in ¢. Suppose a4, ...a, are elements in the given
atomic-indiscernible model of ¢(z1,...,x,). Let p(xy,...,z,) be the
full atomic type of (ay,...,a,) in the language £'. Extend a4, ..., a, to
an infinite sequence (a, | n € w) such that whenever i; < --- < i,, then
the £ atomic type of a;,...,a;, is precisely p. For longer increasing
sequences and relations in £\ £’, make arbitrary choices, preserving that
(an | n € w) is atomic-indiscernible. Atomic indiscernibility guarantees
that (a, | n € w) = ¢. In particular, this is an infinite model of .
Going from infinite to finite: Use part (a) to get an infinite indiscernible
sequence modeling ¢. Universal sentences go down in substructures, so

take N to be the first n points of the sequence.

Checking the £'-structures of size n to see if any are atomic-indiscernible
and satisfy ¢ is a finite process which checks whether or not ¢ has an
infinite model, by (b).



