Instructions: Do all six problems.

If you think that a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

If you are unable to solve a problem completely, you may receive partial credit by weakening a conclusion or strengthening a hypothesis. In this case, include such information in your solution, so the graders know that you know that your solution is not complete.

If you want to ask a grader a question during the exam, write out your question on an $8\frac{1}{2}$ by 11 sheet of paper. Give it to the proctor. The proctor will contact one of the logic graders who will retrieve your written question, write a response, copy the sheet of paper, and return it to the proctor.

E1. Recall that a model M is atomic if every tuple $\bar{a} \in M$ satisfies an isolated type. That is, there is some formula φ so that $M \models \varphi(\bar{a})$ and for every formula $\rho(\bar{x})$, either $M \models \forall \bar{x} (\varphi(\bar{x}) \to \rho(\bar{x}))$ or $M \models \forall \bar{x} (\varphi(\bar{x}) \to \neg \rho(\bar{x}))$.

- Does there exist a countable theory with an atomic model of size \aleph_0 but no atomic model of size \aleph_1 ?
- Does there exist a countable theory with an atomic model of size ℵ₁ but no atomic model of size ℵ₀?

E2. Show that there is a partial recursive unary function which cannot be extended to a total recursive function.

E3. Let φ be the Goldbach conjecture: Any even number ≥ 4 is the sum of two primes. Let T be a system of axioms extending ZFC, and suppose that $T \vdash \varphi$. Prove that $\text{ZFC} + \text{CON}(T) \vdash \varphi$.

Computability Theory

C1. Recall that an infinite $X \subseteq \omega$ is *immune* if it contains no infinite c.e. subset. A c.e. set is *simple* if its complement is immune. Let $A \subseteq \omega$ be a simple set.

- 1. [3.5 points] Show that there is a partial computable function φ such that if W_e is infinite, then $\varphi(e) \downarrow \in A \cap W_e$.
- 2. [6.5 points] Prove that the function in part (1) cannot be total.

C2. Let $A \ge_T 0'$. Construct sets G and H such that $G' \equiv_T A \equiv_T H'$ and G and H form a minimal pair.

C3. A Π_1^0 class $P \subseteq 2^{\omega}$ is *small* if for every computable function g there is an n such that fewer than n strings in $2^{g(n)}$ are extendable in P. Use a priority argument to construct a nonempty, small Π_1^0 class with no computable elements. (A moveable markers construction is also perfectly acceptable.)

Model Theory

M1. Give an example of a theory with a countable prime model but no countable saturated model.

M2. Assume that T is a theory in a language \mathcal{L} with countably infinite signature.

- Show that if T is ω -categorical, then for every finite sublanguage $\mathcal{L}' \subseteq \mathcal{L}, T \upharpoonright \mathcal{L}'$ is ω -categorical.
- Is the converse true? Prove or give a counterexample.

M3. Let T be the theory of triangle-free symmetric graphs (i.e. the theory of symmetric graphs along with the axiom $\neg \exists x \exists y \exists z E(x, y) \land E(y, z) \land E(x, z)$) along with the additional axioms:

$$\Psi_{n,m} := \forall x_0, \dots x_{n-1} \forall y_0, \dots y_{m-1} \\ \left(\left(\bigwedge_{j < k < m} \neg E(y_j, y_k) \land \bigwedge_{i < n, j < m} x_i \neq y_j \right) \\ \rightarrow \exists z \left(\bigwedge_{i < n} \neg E(z, x_i) \land \bigwedge_{j < m} E(z, y_j) \right) \right)$$
(1)

- Show that T has a model.
- Show that T has quantifier-elimination
- Show that T is complete.

January 2022

Set Theory

S1. Suppose $T \subseteq 2^{<\omega_1}$ is a subtree, i.e., $s \subseteq t \in T$ implies $s \in T$. Define $s =^* t$ iff they have the same domain and there are at most finitely many β with $s(\beta) \neq t(\beta)$. Define

$$T^* = \{ s \in 2^{<\omega_1} : \exists t \in T \ s =^* t \}.$$

Prove that if T is an Aronszajn tree, then T^* is also an Aronszajn tree. (Recall that an *Aronszajn tree* is an uncountable tree with no uncountable branches and no uncountable levels)

S2. Suppose V = L. Prove that for every $\alpha < \omega_1$ there exists $\delta < \omega_1$ such that

$$(L_{\delta+\alpha} \setminus L_{\delta}) \cap \mathcal{P}(\omega) = \emptyset.$$

S3. Let κ be an uncountable singular cardinal. Let

$$\mathbb{P} = \{ p : D \to 2 : D \in [\kappa]^{<\kappa} \}.$$

Prove forcing with \mathbb{P} collapses κ to $cof(\kappa)$.

Sketchy Answers or Hints

E1 ans. Part 1: Yes, PA for example. Or the theory of equality and countably many distinct constants. The only atomic model is the one where every element is named by a constant. Part 2: No. Take an atomic model of size \aleph_1 and apply downward Skolem.

E2 ans. Let $\varphi(x) = \begin{cases} 1 + \varphi_x(x) & \text{if } \varphi_x(x) \downarrow \\ \uparrow & \text{otherwise.} \end{cases}$ This is a partial computable function (e.g., making use of the universal Turing machine).

E3 ans. This can be done in 2 natural ways. The first uses the fact that ZFC (or even PA) "knows" that it proves every true Σ_1^0 sentence about arithmetic. This in turn is because it proves every true quantifier free sentence and you can build up from that to proving the correctness of a witness to the Σ_1^0 sentence. So, if the Goldbach conjecture were false, then its negation is a true Σ_1^0 sentence. So, ZFC knows that it would prove that. It is, ZFC proves $\neg \varphi \rightarrow PR(\neg \varphi)$. But we also have $T \vdash \varphi$. So, ZFC proves that $\neg(\varphi)$ implies $\neg Con(T)$, as needed.

A more set-theoretic approach: $\operatorname{Con}(T)$ means there's a model M of T. M has a (probably) nonstandard model of ω on which the Goldbach conjecture holds. But ZFC proves that ω is an initial segment of every nonstandard model of ω and Golbach is Π_1 , so it holds on ω .

C1 ans.

- 1. Fix uniformly computable approximations $\{A_s\}_{s<\omega}$ to A and $\{W_{e,s}\}_{s<\omega}$ to W_e for every e. Define $\varphi_s(e)$ to be the least element in $A_s \cap W_{e,s}$ if such exists and let it be undefined otherwise.
- 2. Assume that there is a total computable function f with this property. Define a computable functions g such that $W_{g(e)} = \overline{\{f(e)\}}$. By the fixed point theorem there is some e such that $W_e = \overline{\{f(e)\}}$, but this contradicts the assumptions about f.

C2 ans. We build $G = \bigcup \sigma_s$ and $H = \bigcup \lambda_s$. At stage 0 we have $\sigma_0 = \lambda_0 = \emptyset$. Suppose that we have constructed σ_s and λ_s . First we code A: let $\sigma^* = \sigma_s A(s)$ and $\lambda^* = \lambda_s A(s)$. Next we force the jump: Let Φ be the s-th Turing operator in some standard enumeration. For $\delta \in \{\sigma, \lambda\}$ ask if there is some extension $\eta \succeq \delta^*$ such that $\Phi^{\eta}(s) \downarrow$. If the answer is positive let $\delta^{**} = \eta$ for the least such η and otherwise let $\delta^{**} = \delta^*$. Finally, we ensure the minimal pair requirements: ask if there are extensions $\tau \succeq \sigma^{**}$ and $\mu \succeq \lambda^{**}$, as well as some number n such that $\Phi^{\tau}(n) \downarrow \neq \Phi^{\mu}(n)$. If the answer is positive then fix the least such pair of extensions τ and μ and let $\sigma_{s+1} = \tau$ and $\lambda_{s+1} = \mu$. Otherwise $\sigma_{s+1} = \sigma^{**}$ and $\lambda_{s+1} = \lambda^{**}$. Notice that the construction can be run by A, as $A \ge 0'$ and all questions have 0' computable answers. The construction can also be run by either $G \oplus 0' \leq_T G'$ or by $H \oplus 0' \leq_T H'$: use G or H to determine the bit $G(|\sigma_s|) = \sigma_{s+1}(|\sigma_s|) = A(s) = \lambda_{s+1}(|\lambda_s|) = H(\lambda_s)$ and 0' to answer the next two questions.

C3 ans. We build a Π_1^0 tree T as follows. Let Q_e be the requirement expressing that if φ_e is a total $\{0, 1\}$ -valued function then it is not a branch P and let S_e be the requirement expressing that if φ_e is a total function then there is an n such that fewer than n strings in $2^{g(n)}$ are extendable in P. At stage 0, we let $T = 2^{<\omega}$ and we assign a level $l_e = 2e$ to every Q_e requirement and a witness $n_e = 2^{2e+1}$ to every S_e requirement (the number of strings of length $l_e + 1$ in the current approximation to the tree). A Q_e requirement requires attention at stage s if $\varphi_{e,s}(l_e) \downarrow$. An S_e requires attention at stage s if $\varphi_{e,s}(n_e) \downarrow$. At stage s pick the least requirement that requires attention and has not yet been satisfied. If there is no such requirement, let $T_{s+1} = T_s$. If this is Q_e and $\varphi_e(l_e) \neq 0$ then let $T_{s+1} = T_s \setminus \{\sigma^{-1}^{-}\tau | |\sigma| = l_e\}$. Injure all lower priority requirements by resetting their parameters and declare them unsatisfied; if j = e + k, where k > 0 then let $n_j = l_e + 2k$; if j = e + k, where $k \geq 0$ then let n_j be the number of strings in T_{s+1} of length $l_j + 1$.

If the requirement is S_e then denote by g(n) the number $\varphi_{e,s}(n_e)$. If $g(n) \leq l_e+1$ then the requirement is already satisfied and we can let $T_{s+1} = T_s$. Otherwise let $T_{s+1} = T_s \setminus \{\sigma^{\frown}\tau^{\frown}\rho | |\sigma| = l_e+1 \& |\tau| = g(n) - l_e - 1 \& \tau \notin \{0\}^{<\omega}\}$. Let $P = [\bigcap_s T_s]$.

M1 ans. Refining equivalence relations can work. Or (maybe more naturally), you have to come up with a theory where the isolated types are dense,

yet there are uncountably many types (for some n). First construct a tree $T \subseteq 2^{<\omega}$ where the isolated paths are dense yet there are continuum many paths and then embed this as $S_1(T)$ for a theory T.

M2 ans. Use the Ryll-Nardzewski theorem and count types. If there were infinitely many inequivalent \mathcal{L}' -formulas $T \upharpoonright \mathcal{L}'$, then this would be infinitely many inequivalent \mathcal{L} -formulas in T. This gives a hint why the converse fails. Take the theory in language $\{U_i \mid i \in \omega\}$ with each U_i unary that says that every possibility of U's and negations occurs infinitely often. In every finite language of size n, you have exactly 2^n 1-types, and the theory is ω -categorical, but in T, you have 2^{\aleph_0} -many 1-types and the theory is not ω -categorical.

M3 ans. Construct a model by successively adding elements to satisfy the various axioms $\psi_{n,m}$ without creating any triangles. For example, construct a model with universe ω by satisfying requirements $R_{\bar{x},\bar{y}}$ for tuples $\bar{x}, \bar{y} \subset \omega$ and order them so the each requirement appears infinitely often. When you visit a requirement, if the atomic type of the tuple \bar{x}, \bar{y} hasn't been determined yet, just skip it to be considered later. If it has, and the antecedant of the axiom $\Psi_{|\bar{x}|,|\bar{y}|}$ holds, then add an element z (the next number in ω) so that $\bigwedge_{x\in\bar{x}} \neg R(z,x) \land \bigwedge_{y\in\bar{y}} R(z,y)$. Observe that if you do this by only connecting the new z to elements in \bar{y} , then this cannot create a triangle.

To see that T has QE: You could do this syntactically by eliminating an existential quantifier over a quantifier-free formula. The axioms $\Psi_{n,m}$ are exactly what you need to say that anything that doesn't make a triangle has to exist. Or you can use a semantic test: Given $\bar{a} \in M \models T$ and $\bar{b} \in N \models T$ so that $\bar{a} \cong \bar{b}$ and some element $c \in M$, let n be the number of $a \in \bar{a}$ so that E(a,c). Then $\Psi_{n,|\bar{a}|-n}$ implies that there is an element $d \in N$ so that $\bar{a}, c \cong \bar{b}, d$.

To see that T is complete, you can just observe that there are no quantifierfree sentences in the language because there are no constants.

S1 ans. Suppose for contradiction that $b \in 2^{\omega_1}$ is a branch of T^* . For each countable ordinal α choose $t_{\alpha} \in T$ with $b \upharpoonright \alpha =^* t_{\alpha}$ and take $F_{\alpha} \subseteq \alpha$ finite

such that $b \upharpoonright (\alpha \setminus F_{\alpha}) = t_{\alpha} \upharpoonright (\alpha \setminus F_{\alpha})$. By the pushing down lemma there exists $\alpha_0 < \omega_1$ and a stationary set $S \subseteq \omega_1$ such that $F_{\alpha} \subseteq \alpha_0$ for all $\alpha \in S$. Splitting S into countably many sets gives us a stationary subset $S_0 \subseteq S$ and F with $F_{\alpha} = F$ for all $\alpha \in S_0$. Similarly there is a stationary set $S_1 \subseteq S_0$ and finite function t with $t_{\alpha} \upharpoonright F_0 = t$ for all $\alpha \in S_1$. But this means that t_{α} for $\alpha \in S_1$ is an ω_1 branch of T.

S2 ans. Take M countable elementary substructure of L_{ω_2} containing α and collapse it to L_{β} . Let $\delta = \omega_1^{L_{\beta}}$. Then since L_{ω_2} models that $\mathcal{P}(\omega) \subseteq L_{\omega_1}$ it follows that L_{β} models that $\mathcal{P}(\omega) \subseteq L_{\delta}$. Since $\alpha \subseteq M$ the result follows.

S3 ans. Since \mathbb{P} is $\operatorname{cof}(\kappa)$ -closed no cardinals $\leq \operatorname{cof}(\kappa)$ are collapsed. Working in the ground model M let $\kappa_i < \kappa$ for $i < \operatorname{cof}(\kappa)$ be a cofinal sequence of regular cardinals. For each i let $h_i : \kappa_i \to \kappa_i$ be onto and κ_i -to-one. Let G be \mathbb{P} generic over M and put

$$X = \{ \alpha : \exists p \in G \ p(\alpha) = 1 \}.$$

Let $f : \operatorname{cof}(\kappa) \to \kappa$ be defined as follows. If $X \cap \kappa_i$ has a greatest element β put $f(i) = h_i(\beta)$, otherwise put f(i) = 0. We claim that f is onto. For contradiction suppose $\alpha < \kappa$ is not in the range of f and $p \in G$ is such that

$$p \Vdash \forall i < \operatorname{cof}(\kappa) \ f(i) \neq \alpha.$$

Choose *i* so that $|p| < \kappa_i$ and $\alpha < \kappa_i$. Since h_i is κ_i -to-one and onto we can find $\beta < \kappa_i$ with $\kappa_i \cap \operatorname{dom}(p) \subseteq \beta$ and $h_i(\beta) = \alpha$. Extend *p* to *q* so that $q(\beta) = 1$ and $q(\gamma) = 0$ for all γ with $\beta < \gamma < \kappa_i$. But then

$$q \Vdash f(i) = \alpha$$

which is a contradiction.