Logic Qualifying Exam January 2022

Instructions: Do all six problems.

If you think that a problem has been stated incorrectly, mention this to
the proctor and indicate your interpretation in your solution. In such cases,
do not interpret the problem in such a way that it becomes trivial.

If you are unable to solve a problem completely, you may receive partial
credit by weakening a conclusion or strengthening a hypothesis. In this case,
include such information in your solution, so the graders know that you know
that your solution is not complete.

If you want to ask a grader a question during the exam, write out your
question on an 8% by 11 sheet of paper. Give it to the proctor. The proctor
will contact one of the logic graders who will retrieve your written question,
write a response, copy the sheet of paper, and return it to the proctor.

E1. Recall that a model M is atomic if every tuple a € M satisfies an isolated
type. That is, there is some formula ¢ so that M = ¢(a) and for every
formula p(z), either M |=VZz (p(Z) — p(Z)) or M = VT (o(Z) — —p(Z)).

e Does there exist a countable theory with an atomic model of size N
but no atomic model of size N7

e Does there exist a countable theory with an atomic model of size Ny
but no atomic model of size Vg7

E2. Show that there is a partial recursive unary function which cannot be
extended to a total recursive function.

E3. Let ¢ be the Goldbach conjecture: Any even number > 4 is the sum of
two primes. Let T" be a system of axioms extending ZFC, and suppose that
T + . Prove that ZFC + CON(T') I- .
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Computability Theory

C1. Recall that an infinite X C w is ¢émmune if it contains no infinite c.e.
subset. A c.e. set is simple if its complement is immune. Let A C w be a
simple set.

1. [3.5 points] Show that there is a partial computable function ¢ such
that if W, is infinite, then p(e) ] € ANW..

2. [6.5 points] Prove that the function in part (1) cannot be total.

C2. Let A >7 0. Construct sets G and H such that G’ = A= H and G
and H form a minimal pair.

C3. A TIY class P C 2 is small if for every computable function ¢ there is
an n such that fewer than n strings in 290" are extendable in P. Use a pri-
ority argument to construct a nonempty, small TI{ class with no computable
elements. (A moveable markers construction is also perfectly acceptable.)
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Model Theory

M1. Give an example of a theory with a countable prime model but no
countable saturated model.

M2. Assume that T is a theory in a language £ with countably infinite
signature.

e Show that if 7" is w-categorical, then for every finite sublanguage £’ C
L, T | L is w-categorical.

e [s the converse true? Prove or give a counterexample.

M3. Let T be the theory of triangle-free symmetric graphs (i.e. the theory of
symmetric graphs along with the axiom —3z3y3zE(x,y) A E(y, 2) A E(z, 2))
along with the additional axioms:

Vom i =VZ0, ... Tn_1VY0, - - - Ym—1

(( N —Ewiun N xﬁéyy)

j<k<m 1<n,j<m
— Elz( /\ —E(z,x;) A /\ E(z,yﬂ))
i<n j<m

e Show that T" has a model.
e Show that T has quantifier-elimination

e Show that T is complete.
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Set Theory

S1. Suppose T' C 2<“1 is a subtree, i.e., s C ¢t € T implies s € T. Define
s =* t iff they have the same domain and there are at most finitely many g

with s(5) # t(B). Define
T ={se2 . ReT s="t}.

Prove that if T' is an Aronszajn tree, then 7™ is also an Aronszajn tree.
(Recall that an Aronszajn tree is an uncountable tree with no uncountable
branches and no uncountable levels)

S2. Suppose V = L. Prove that for every a < w; there exists § < w; such
that
(Ls+a \ Ls) NP(w) = 0.

S3. Let xk be an uncountable singular cardinal. Let
P={p:D—2:D e [g"}

Prove forcing with P collapses x to cof(k).
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Sketchy Answers or Hints

E1 ans. Part 1: Yes, PA for example. Or the theory of equality and
countably many distinct constants. The only atomic model is the one where
every element is named by a constant. Part 2: No. Take an atomic model of
size Ny and apply downward Skolem.

Lt o) if o))

~~ This is a partial computable
otherwise.

E2 ans. Let p(x) =

function (e.g., making use of the universal Turing machine).

E3 ans. This can be done in 2 natural ways. The first uses the fact that
ZFC (or even PA) “knows” that it proves every true XY sentence about arith-
metic. This in turn is because it proves every true quantifier free sentence
and you can build up from that to proving the correctness of a witness to
the 30 sentence. So, if the Goldbach conjecture were false, then its negation
is a true X9 sentence. So, ZFC knows that it would prove that. It is, ZFC
proves ¢ — PR(—¢). But we also have Tt ¢. So, ZFC proves that —(¢p)
implies =Con(T"), as needed.

A more set-theoretic approach: Con(7) means there’s a model M of T. M
has a (probably) nonstandard model of w on which the Goldbach conjecture
holds. But ZFC proves that w is an initial segment of every nonstandard
model of w and Golbach is II;, so it holds on w.

C1 ans.

1. Fix uniformly computable approximations { As}s<, to A and {W, s }s<w
to W, for every e. Define p;(e) to be the least element in A, N W, , if
such exists and let it be undefined otherwise.

2. Assume that there is a total computable function f with this property.
Define a computable functions g such that Wy = {f(e)}. By the

fixed point theorem there is some e such that W, = {f(e)}, but this
contradicts the assumptions about f.
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C2 ans. We build G = |Jos and H = |JAs. At stage 0 we have oy =
Ao = . Suppose that we have constructed o, and \,. First we code A: let
o* =0, A(s) and \* = A\ A(s). Next we force the jump: Let ® be the s-th
Turing operator in some standard enumeration. For § € {0, A\} ask if there is
some extension 7 > §* such that ®"(s) | . If the answer is positive let §** =7
for the least such 7 and otherwise let 0** = *. Finally, we ensure the minimal
pair requirements: ask if there are extensions 7 > ¢** and p > A\**, as well
as some number n such that ®7(n) | # ®#(n). If the answer is positive then
fix the least such pair of extensions 7 and p and let 0,1 = 7 and \s11 = p.
Otherwise 0,11 = o™ and Agy; = A**. Notice that the construction can
be run by A, as A > 0/ and all questions have 0’ computable answers. The
construction can also be run by either G0 <7 G’ or by H®0 <y H': use G
or H to determine the bit G(|os]) = gs41(|os|) = A(s) = As1(|As]) = H(As)
and 0’ to answer the next two questions.

C3 ans. We build a II{ tree T as follows. Let Q. be the requirement ex-
pressing that if ¢, is a total {0, 1}-valued function then it is not a branch P
and let S, be the requirement expressing that if ¢, is a total function then
there is an n such that fewer than n strings in 29" are extendable in P. At
stage 0, we let T' = 2<“ and we assign a level [, = 2e to every (). requirement
and a witness n, = 22! to every S. requirement (the number of strings of
length [, + 1 in the current approximation to the tree). A (). requirement
requires attention at stage s if ¢.(lc) ). An S, requires attention at stage
s if pes(ne) L. At stage s pick the least requirement that requires attention
and has not yet been satisfied. If there is no such requirement, let T, = T5.
If this is Q. and ¢ (l.) # 0 then let Ty = T5 \ {c7177||o] = lc}. Injure all
lower priority requirements by resetting their parameters and declare them
unsatisfied; if j = e + &, where k > 0 then let n; = [. + 2k; if j = e + F,
where k > 0 then let n; be the number of strings in T, of length [; 4 1.

If the requirement is S, then denote by g(n) the number ¢, s(n.). If g(n) <
le+1 then the requirement is already satisfied and we can let T, = T;. Oth-
erwise let Tspy = T \{o ™77 p|lo| =lc+1 & |T| = g(n)—l.—1 & 7 ¢ {0}<“}.
Let P =[N, Tsl.

M1 ans. Refining equivalence relations can work. Or (maybe more natu-
rally), you have to come up with a theory where the isolated types are dense,
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yet there are uncountably many types (for some n). First construct a tree
T C 2<% where the isolated paths are dense yet there are continuum many
paths and then embed this as S;(7") for a theory 7.

M2 ans. Use the Ryll-Nardzewski theorem and count types. If there were
infinitely many inequivalent £'-formulas 7' [ £, then this would be infinitely
many inequivalent L-formulas in 7. This gives a hint why the converse
fails. Take the theory in language {U; | ¢ € w} with each U; unary that
says that every possibility of U’s and negations occurs infinitely often. In
every finite language of size n, you have exactly 2" 1-types, and the theory
is w-categorical, but in T, you have 2%-many 1-types and the theory is not
w-categorical.

M3 ans. Construct a model by successively adding elements to satisfy the
various axioms 1, ,, without creating any triangles. For example, construct
a model with universe w by satisfying requirements R; ; for tuples z,y C w
and order them so the each requirement appears infinitely often. When you
visit a requirement, if the atomic type of the tuple Z,y hasn’t been deter-
mined yet, just skip it to be considered later. If it has, and the antecedant
of the axiom W5 holds, then add an element z (the next number in w)
so that A\, =R(z,2) A )\,c; B(z,y). Observe that if you do this by only
connecting the new z to elements in 7, then this cannot create a triangle.

To see that T has QE: You could do this syntactically by eliminating an
existential quantifier over a quantifier-free formula. The axioms ¥, ,, are
exactly what you need to say that anything that doesn’t make a triangle has
to exist. Or you can use a semantic test: Givena € M =T and b€ N =T
so that @ = b and some element ¢ € M, let n be the number of a € a so
that E(a,c). Then VU, 5, implies that there is an element d € N so that
a,c=0b,d.

To see that T' is complete, you can just observe that there are no quantifier-
free sentences in the language because there are no constants.

S1 ans. Suppose for contradiction that b € 2“1 is a branch of T™*. For each
countable ordinal « choose t, € T with bla =* t, and take F, C « finite
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such that b[(a\ F,) = tof(a\ Fy). By the pushing down lemma there exists
ap < w; and a stationary set S C w; such that F, C ap for all a € S.
Splitting .S into countably many sets gives us a stationary subset Sy C S and
F with F, = F for all « € Sy. Similarly there is a stationary set S; C Sy
and finite function ¢ with ¢,[Fy = t for all o € S;. But this means that ¢,
for a € 5] is an w; branch of T'.

S2 ans. Take M countable elementary substructure of L, containing o and

collapse it to Lg. Let 6 = wlL ?. Then since L, models that P(w) C L, it
follows that Lg models that P(w) C Ls. Since a € M the result follows.

S3 ans. Since P is cof(k)-closed no cardinals < cof(x) are collapsed. Working
in the ground model M let k; < k for i < cof(k) be a cofinal sequence of
regular cardinals. For each i let h; : k; — k; be onto and k;-to-one.

Let G be P generic over M and put

X={a:3IpeCG pla) =1}

Let f : cof(k) — k be defined as follows. If X N k; has a greatest element
B put f(i) = hi(B), otherwise put f(i) = 0. We claim that f is onto. For
contradiction suppose a < k is not in the range of f and p € G is such that

pIFVi < cof(k) f(i) # a.

Choose i so that |p| < k; and a < k;. Since h; is k;-to-one and onto we can
find 5 < k; with k; Ndom(p) C S and h;(f) = a. Extend p to ¢ so that
q(f) =1 and ¢(v) = 0 for all v with 5 < v < k;. But then

qlFf(i) =«

which is a contradiction.



