
Logic Qualifying Exam January 2022

Instructions: Do all six problems.
If you think that a problem has been stated incorrectly, mention this to

the proctor and indicate your interpretation in your solution. In such cases,
do not interpret the problem in such a way that it becomes trivial.

If you are unable to solve a problem completely, you may receive partial
credit by weakening a conclusion or strengthening a hypothesis. In this case,
include such information in your solution, so the graders know that you know
that your solution is not complete.

If you want to ask a grader a question during the exam, write out your
question on an 81

2
by 11 sheet of paper. Give it to the proctor. The proctor

will contact one of the logic graders who will retrieve your written question,
write a response, copy the sheet of paper, and return it to the proctor.

E1. Recall that a modelM is atomic if every tuple ā ∈M satisfies an isolated
type. That is, there is some formula φ so that M |= φ(ā) and for every
formula ρ(x̄), either M |= ∀x̄ (φ(x̄) → ρ(x̄)) or M |= ∀x̄ (φ(x̄) → ¬ρ(x̄)).

� Does there exist a countable theory with an atomic model of size ℵ0

but no atomic model of size ℵ1?

� Does there exist a countable theory with an atomic model of size ℵ1

but no atomic model of size ℵ0?

E2. Show that there is a partial recursive unary function which cannot be
extended to a total recursive function.

E3. Let φ be the Goldbach conjecture: Any even number ≥ 4 is the sum of
two primes. Let T be a system of axioms extending ZFC, and suppose that
T ⊢ φ. Prove that ZFC + CON(T ) ⊢ φ.
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Computability Theory

C1. Recall that an infinite X ⊆ ω is immune if it contains no infinite c.e.
subset. A c.e. set is simple if its complement is immune. Let A ⊆ ω be a
simple set.

1. [3.5 points] Show that there is a partial computable function φ such
that if We is infinite, then φ(e) ↓ ∈ A ∩We.

2. [6.5 points] Prove that the function in part (1) cannot be total.

C2. Let A ≥T 0′. Construct sets G and H such that G′ ≡T A ≡T H
′ and G

and H form a minimal pair.

C3. A Π0
1 class P ⊆ 2ω is small if for every computable function g there is

an n such that fewer than n strings in 2g(n) are extendable in P . Use a pri-
ority argument to construct a nonempty, small Π0

1 class with no computable
elements. (A moveable markers construction is also perfectly acceptable.)
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Model Theory

M1. Give an example of a theory with a countable prime model but no
countable saturated model.

M2. Assume that T is a theory in a language L with countably infinite
signature.

� Show that if T is ω-categorical, then for every finite sublanguage L′ ⊆
L, T ↾ L′ is ω-categorical.

� Is the converse true? Prove or give a counterexample.

M3. Let T be the theory of triangle-free symmetric graphs (i.e. the theory of
symmetric graphs along with the axiom ¬∃x∃y∃zE(x, y)∧E(y, z)∧E(x, z))
along with the additional axioms:

Ψn,m :=∀x0, . . . xn−1∀y0, . . . ym−1(( ∧
j<k<m

¬E(yj, yk) ∧
∧

i<n,j<m

xi ̸= yj

)

→ ∃z
(∧

i<n

¬E(z, xi) ∧
∧
j<m

E(z, yj)

)) (1)

� Show that T has a model.

� Show that T has quantifier-elimination

� Show that T is complete.
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Set Theory

S1. Suppose T ⊆ 2<ω1 is a subtree, i.e., s ⊆ t ∈ T implies s ∈ T . Define
s =∗ t iff they have the same domain and there are at most finitely many β
with s(β) ̸= t(β). Define

T ∗ = {s ∈ 2<ω1 : ∃t ∈ T s =∗ t}.

Prove that if T is an Aronszajn tree, then T ∗ is also an Aronszajn tree.
(Recall that an Aronszajn tree is an uncountable tree with no uncountable
branches and no uncountable levels)

S2. Suppose V = L. Prove that for every α < ω1 there exists δ < ω1 such
that

(Lδ+α \ Lδ) ∩ P(ω) = ∅.

S3. Let κ be an uncountable singular cardinal. Let

P = {p : D → 2 : D ∈ [κ]<κ}.

Prove forcing with P collapses κ to cof(κ).
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Sketchy Answers or Hints

E1 ans. Part 1: Yes, PA for example. Or the theory of equality and
countably many distinct constants. The only atomic model is the one where
every element is named by a constant. Part 2: No. Take an atomic model of
size ℵ1 and apply downward Skolem.

E2 ans. Let φ(x) =

{
1 + φx(x) if φx(x) ↓
↑ otherwise.

This is a partial computable

function (e.g., making use of the universal Turing machine).

E3 ans. This can be done in 2 natural ways. The first uses the fact that
ZFC (or even PA) “knows” that it proves every true Σ0

1 sentence about arith-
metic. This in turn is because it proves every true quantifier free sentence
and you can build up from that to proving the correctness of a witness to
the Σ0

1 sentence. So, if the Goldbach conjecture were false, then its negation
is a true Σ0

1 sentence. So, ZFC knows that it would prove that. It is, ZFC
proves ¬φ → PR(¬φ). But we also have T ⊢ φ. So, ZFC proves that ¬(φ)
implies ¬Con(T ), as needed.

A more set-theoretic approach: Con(T ) means there’s a model M of T . M
has a (probably) nonstandard model of ω on which the Goldbach conjecture
holds. But ZFC proves that ω is an initial segment of every nonstandard
model of ω and Golbach is Π1, so it holds on ω.

C1 ans.

1. Fix uniformly computable approximations {As}s<ω to A and {We,s}s<ω

to We for every e. Define φs(e) to be the least element in As ∩We,s if
such exists and let it be undefined otherwise.

2. Assume that there is a total computable function f with this property.
Define a computable functions g such that Wg(e) = {f(e)}. By the

fixed point theorem there is some e such that We = {f(e)}, but this
contradicts the assumptions about f .
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C2 ans. We build G =
⋃
σs and H =

⋃
λs. At stage 0 we have σ0 =

λ0 = ∅. Suppose that we have constructed σs and λs. First we code A: let
σ∗ = σ⌢

s A(s) and λ
∗ = λ⌢s A(s). Next we force the jump: Let Φ be the s-th

Turing operator in some standard enumeration. For δ ∈ {σ, λ} ask if there is
some extension η ⪰ δ∗ such that Φη(s) ↓ . If the answer is positive let δ∗∗ = η
for the least such η and otherwise let δ∗∗ = δ∗. Finally, we ensure the minimal
pair requirements: ask if there are extensions τ ⪰ σ∗∗ and µ ⪰ λ∗∗, as well
as some number n such that Φτ (n) ↓ ≠ Φµ(n). If the answer is positive then
fix the least such pair of extensions τ and µ and let σs+1 = τ and λs+1 = µ.
Otherwise σs+1 = σ∗∗ and λs+1 = λ∗∗. Notice that the construction can
be run by A, as A ≥ 0′ and all questions have 0′ computable answers. The
construction can also be run by either G⊕0′ ≤T G

′ or byH⊕0′ ≤T H
′: use G

or H to determine the bit G(|σs|) = σs+1(|σs|) = A(s) = λs+1(|λs|) = H(λs)
and 0′ to answer the next two questions.

C3 ans. We build a Π0
1 tree T as follows. Let Qe be the requirement ex-

pressing that if φe is a total {0, 1}-valued function then it is not a branch P
and let Se be the requirement expressing that if φe is a total function then
there is an n such that fewer than n strings in 2g(n) are extendable in P . At
stage 0, we let T = 2<ω and we assign a level le = 2e to every Qe requirement
and a witness ne = 22e+1 to every Se requirement (the number of strings of
length le + 1 in the current approximation to the tree). A Qe requirement
requires attention at stage s if φe,s(le) ↓. An Se requires attention at stage
s if φe,s(ne) ↓. At stage s pick the least requirement that requires attention
and has not yet been satisfied. If there is no such requirement, let Ts+1 = Ts.
If this is Qe and φe(le) ̸= 0 then let Ts+1 = Ts \ {σ⌢1⌢τ ||σ| = le}. Injure all
lower priority requirements by resetting their parameters and declare them
unsatisfied; if j = e + k, where k > 0 then let nj = le + 2k; if j = e + k,
where k ≥ 0 then let nj be the number of strings in Ts+1 of length lj + 1.

If the requirement is Se then denote by g(n) the number φe,s(ne). If g(n) ≤
le+1 then the requirement is already satisfied and we can let Ts+1 = Ts. Oth-
erwise let Ts+1 = Ts\{σ⌢τ⌢ρ||σ| = le+1 & |τ | = g(n)− le−1 & τ /∈ {0}<ω}.
Let P = [

⋂
s Ts].

M1 ans. Refining equivalence relations can work. Or (maybe more natu-
rally), you have to come up with a theory where the isolated types are dense,
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yet there are uncountably many types (for some n). First construct a tree
T ⊆ 2<ω where the isolated paths are dense yet there are continuum many
paths and then embed this as S1(T ) for a theory T .

M2 ans. Use the Ryll-Nardzewski theorem and count types. If there were
infinitely many inequivalent L′-formulas T ↾ L′, then this would be infinitely
many inequivalent L-formulas in T . This gives a hint why the converse
fails. Take the theory in language {Ui | i ∈ ω} with each Ui unary that
says that every possibility of U ’s and negations occurs infinitely often. In
every finite language of size n, you have exactly 2n 1-types, and the theory
is ω-categorical, but in T , you have 2ℵ0-many 1-types and the theory is not
ω-categorical.

M3 ans. Construct a model by successively adding elements to satisfy the
various axioms ψn,m without creating any triangles. For example, construct
a model with universe ω by satisfying requirements Rx̄,ȳ for tuples x̄, ȳ ⊂ ω
and order them so the each requirement appears infinitely often. When you
visit a requirement, if the atomic type of the tuple x̄, ȳ hasn’t been deter-
mined yet, just skip it to be considered later. If it has, and the antecedant
of the axiom Ψ|x̄|,|ȳ| holds, then add an element z (the next number in ω)
so that

∧
x∈x̄ ¬R(z, x) ∧

∧
y∈ȳ R(z, y). Observe that if you do this by only

connecting the new z to elements in ȳ, then this cannot create a triangle.

To see that T has QE: You could do this syntactically by eliminating an
existential quantifier over a quantifier-free formula. The axioms Ψn,m are
exactly what you need to say that anything that doesn’t make a triangle has
to exist. Or you can use a semantic test: Given ā ∈M |= T and b̄ ∈ N |= T
so that ā ∼= b̄ and some element c ∈ M , let n be the number of a ∈ ā so
that E(a, c). Then Ψn,|ā|−n implies that there is an element d ∈ N so that
ā, c ∼= b̄, d.

To see that T is complete, you can just observe that there are no quantifier-
free sentences in the language because there are no constants.

S1 ans. Suppose for contradiction that b ∈ 2ω1 is a branch of T ∗. For each
countable ordinal α choose tα ∈ T with b↾α =∗ tα and take Fα ⊆ α finite
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such that b↾(α \Fα) = tα↾(α \Fα). By the pushing down lemma there exists
α0 < ω1 and a stationary set S ⊆ ω1 such that Fα ⊆ α0 for all α ∈ S.
Splitting S into countably many sets gives us a stationary subset S0 ⊆ S and
F with Fα = F for all α ∈ S0. Similarly there is a stationary set S1 ⊆ S0

and finite function t with tα↾F0 = t for all α ∈ S1. But this means that tα
for α ∈ S1 is an ω1 branch of T .

S2 ans. TakeM countable elementary substructure of Lω2 containing α and

collapse it to Lβ. Let δ = ω
Lβ

1 . Then since Lω2 models that P(ω) ⊆ Lω1 it
follows that Lβ models that P(ω) ⊆ Lδ. Since α ⊆M the result follows.

S3 ans. Since P is cof(κ)-closed no cardinals≤ cof(κ) are collapsed. Working
in the ground model M let κi < κ for i < cof(κ) be a cofinal sequence of
regular cardinals. For each i let hi : κi → κi be onto and κi-to-one.
Let G be P generic over M and put

X = {α : ∃p ∈ G p(α) = 1}.

Let f : cof(κ) → κ be defined as follows. If X ∩ κi has a greatest element
β put f(i) = hi(β), otherwise put f(i) = 0. We claim that f is onto. For
contradiction suppose α < κ is not in the range of f and p ∈ G is such that

p ⊩∀i < cof(κ) f(i) ̸= α.

Choose i so that |p| < κi and α < κi. Since hi is κi-to-one and onto we can
find β < κi with κi ∩ dom(p) ⊆ β and hi(β) = α. Extend p to q so that
q(β) = 1 and q(γ) = 0 for all γ with β < γ < κi. But then

q ⊩f(i) = α

which is a contradiction.


