
Logic Qualifying Exam August 2022

Instructions: Do all six problems.
If you think that a problem has been stated incorrectly, mention this to

the proctor and indicate your interpretation in your solution. In such cases,
do not interpret the problem in such a way that it becomes trivial.

If you are unable to solve a problem completely, you may receive partial
credit by weakening a conclusion or strengthening a hypothesis. In this case,
include such information in your solution, so the graders know that you know
that your solution is not complete.

If you want to ask a grader a question during the exam, write out your
question on an 81

2
by 11 sheet of paper. Give it to the proctor. The proctor

will contact one of the logic graders who will retrieve your written question,
write a response, copy the sheet of paper, and return it to the proctor.

E1. Prove that the theory of (ω, S) where S(n) = n + 1 is not finitely
axiomatizable.

E2.

1. Let T0, . . . , Tn be L-theories such that each L-structure is a model of
exactly one Ti. Show that each Ti is finitely axiomatizable.

2. Show that this may fail for an infinite collection of theories T0, T1, T2, . . .
that partition the collection of L-structures.

E3. Show that the cardinality of the continuum, c = 2ℵ0 , does not have
countable cofinality. Give a direct proof; do not simply quote a theorem.
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Model Theory

M1. Say that M is minimal if it has no proper elementary submodels.

1. Give an example of a theory with a prime model that is not minimal.

2. Show that if a complete theory T has a prime model and a minimal
model, then they are isomorphic.

3. Show that Th(Z,+) has a minimal model that is not prime.

M2. Show that there is no completion T of the partial theory of fields in the
language {+, ·, 0, 1} which is ℵ0-categorical.

M3. Show that a theory with quantifier elimination has an axiomatization
by sentences of the form ∀x̄∃ȳφ(x̄, ȳ) where φ is quantifier-free.
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Computability Theory

C1. Consider the function

f(e) =

{
n if n is the least number not in We,

−1 if We = ω.

Show that f is not majorized by a ∅′-computable function.

C2. Assume that A ⊆ ω is noncomputable. Construct a set B such that
B ≱T A but B′ ≥T A.

C3. Assume that X is a noncomputable c.e. set. Show that there is a simple
set A that does not compute X. Recall that A is simple if it is a coinfinite
c.e. set and it intersects nontrivially every infinite c.e. set (i.e., A is a c.e. set
whose complement is immune).
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Sketchy Answers or Hints

E1 ans. The theory is axiomatizable as follows: (1) Different elements have
different successors. (2) There is a unique element that is not a successor.
(3) For each n ≥ 1: No element is its own nth successor. (To see that these
axioms give a compete theory, note that they have a unique model of size
ℵ1.) Now if the theory has a finite axiomatization, then a finite subset F of
the axioms above is sufficient—only what is needed to prove the axioms in
the finite axiomatization. To finish, note that since F only has finitely many
axioms of type (3), it cannot rule out a sufficiently big loop.

E2 ans. (1) Since Ti ∪ Tj is not satisfiable when i ̸= j, there is a finite
subset Bi,j that is not satisfiable. Let T j

i = Bi,j ∩ Ti. Then we claim that
Si =

⋃
j ̸=i T

j
i axiomatizes Ti. It is enough to show that it is satisfied by the

same models. Since Si ⊆ Ti, it holds on any model of Ti. On the other hand,
if M is not a model of Ti, then it is a model of Tj for some j. But then M
does not satisfy T j

i ⊆ Si. (2) In the empty language, let T0 be the theory
saying that there are infinitely many distinct elements, and for each i > 0, let
Ti be the theory saying that there are exactly i elements. These partition all
structures, but T0 is not finitely axiomatizable (by the same sort of argument
used in E1).

E3 ans. (This is a special case of König’s theorem.) Let {rα}α<c list all
elements of 2ω. Let λ0 < λ1 < · · · be an ω-sequence of ordinals limiting to c.
We build a sequence r ∈ 2ω by columns as follows (i.e., we are using the fact
that 2ω ≈ 2ω×ω). Make the nth column of r different from the nth column
of rα for all α < λn. This is possible because |λn| < |2ω| = c. But now note
that r is different from every element of 2ω, which is a contradiction.

M1 ans. 1. Consider the theory of an infinite set with no other structure.
2. If M is prime and N is minimal, then use primeness of M to show that it
elementarily embeds into N . But minimality of N shows that this embedding
is onto. So M ∼= N . 3. The structure (Z,+) is itself minimal: Suppose M is
an elementary submodel, and n is an integer in M . Then elementarity of M
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shows that n is divisible in M by n, showing that 1 ∈ M and so all of Z is
contained in M . To see it’s not prime, use omitting types to get a model N
so that every element of N is divisible by some natural number > 1. Then
you cannot elementarily embed Z into N since 1 has nowhere to go.

M2 ans. In fields, there can be only finitely many elements satisfying a
polynomial p(x). In particular, for every n, there can be only finitely many
elements x so that xn = 1. It follows then by compactness that there is a
countable model of T containing an element of infinite order. But then you
have infinitely many 2-types in T corresponding to pairs (x, y) where y = xn

and y ̸= xm for any m < n.

M3 ans. We build a new theory T ′ as follows: We include the set of elim-
ination sentences: ∀x̄(∃ȳψ(x̄, ȳ) ↔ ρ(x̄). These sentences explain how the
QE is witnessed. Then add the 1-quantifier theory of T into T ′. We then
must argue that T ′ is an axiomatization of T . Since T ′ ⊆ T , we need only
show every model of T ′ is a model of T . If φ := ∀x̄ρ(x̄) ∈ T , we use the QE
axioms to replace ρ by a quantifier-free version ρ′. Both T and T ′ agree that
φ is equivalent to ∀x̄ρ′(x̄), and then we have placed this formula into T ′, so
any model of T ′ is a model of φ. Arguing similarly for formulas beginning
with ∃x̄, we see that any formula in T is modeled by any model of T ′.

C1 ans. Assume, for a contradiction, that there is a ∅′-computable function
g that majorizes f . Note that We = ω if and only if [0, g(e)] ⊆ We, so
∅′ ⊕ g ≡T ∅′ can compute TOT, which contradicts the fact that TOT≡T ∅′′.

C2 ans. This is very similar to the proof of the Friedberg Jump Inversion
theorem. Build B by initial segments β0 ⪯ β1 ⪯ · · · . On even stages, we
ensure that φB

e ̸= A as follows: if there is an e-split, take the first discovered
e-split of β2e and take the useful side. (If no e-split exists, then φB

e is partial
or computable.) On odd stages, let β2e+2 = β2e+1A(e). Note that B′ ≥T

B ⊕ ∅′ ≥T A because B ⊕ ∅′ can determine the sequence {βi}. For even
stages, ∅′ can determine when e-splits occur and using B you can see which
side of the split was taken. Odd stages just require reading off the next bit
of B, which is the next coded bit of A.
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C3 ans. This should be proved using a finite injury argument. The require-
ments are Pe : |We| = ∞ =⇒ A ∩We ̸= ∅ and Ne : φ

A ̸= X. The strategy
for Pe is the same one used in the construction of a finite simple set. The
Sacks preservation strategy should be used for Ne.


