Instructions: Do all six problems.

If you think that a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

If you are unable to solve a problem completely, you may receive partial credit by weakening a conclusion or strengthening a hypothesis. In this case, include such information in your solution, so the graders know that you know that your solution is not complete.

If you want to ask a grader a question during the exam, write out your question on an $8\frac{1}{2}$ by 11 sheet of paper. Give it to the proctor. The proctor will contact one of the logic graders who will retrieve your written question, write a response, copy the sheet of paper, and return it to the proctor.

E1. Prove that the theory of (ω, S) where S(n) = n + 1 is not finitely axiomatizable.

E2.

- 1. Let T_0, \ldots, T_n be \mathcal{L} -theories such that each \mathcal{L} -structure is a model of exactly one T_i . Show that each T_i is finitely axiomatizable.
- 2. Show that this may fail for an infinite collection of theories T_0, T_1, T_2, \ldots that partition the collection of \mathcal{L} -structures.

E3. Show that the cardinality of the continuum, $c = 2^{\aleph_0}$, does not have countable cofinality. Give a direct proof; do not simply quote a theorem.

Model Theory

M1. Say that \mathcal{M} is minimal if it has no proper elementary submodels.

- 1. Give an example of a theory with a prime model that is not minimal.
- 2. Show that if a complete theory T has a prime model and a minimal model, then they are isomorphic.
- 3. Show that $\operatorname{Th}(\mathbb{Z}, +)$ has a minimal model that is not prime.

M2. Show that there is no completion T of the partial theory of fields in the language $\{+, \cdot, 0, 1\}$ which is \aleph_0 -categorical.

M3. Show that a theory with quantifier elimination has an axiomatization by sentences of the form $\forall \bar{x} \exists \bar{y} \varphi(\bar{x}, \bar{y})$ where φ is quantifier-free.

Computability Theory

C1. Consider the function

$$f(e) = \begin{cases} n & \text{if } n \text{ is the least number not in } W_e, \\ -1 & \text{if } W_e = \omega. \end{cases}$$

Show that f is not majorized by a \emptyset' -computable function.

C2. Assume that $A \subseteq \omega$ is noncomputable. Construct a set B such that $B \ngeq_T A$ but $B' \ge_T A$.

C3. Assume that X is a noncomputable c.e. set. Show that there is a simple set A that does not compute X. Recall that A is *simple* if it is a coinfinite c.e. set and it intersects nontrivially every infinite c.e. set (i.e., A is a c.e. set whose complement is *immune*).

Sketchy Answers or Hints

E1 ans. The theory is axiomatizable as follows: (1) Different elements have different successors. (2) There is a unique element that is not a successor. (3) For each $n \ge 1$: No element is its own *n*th successor. (To see that these axioms give a compete theory, note that they have a unique model of size \aleph_1 .) Now if the theory has a finite axiomatization, then a finite subset *F* of the axioms above is sufficient—only what is needed to prove the axioms in the finite axiomatization. To finish, note that since *F* only has finitely many axioms of type (3), it cannot rule out a sufficiently big loop.

E2 ans. (1) Since $T_i \cup T_j$ is not satisfiable when $i \neq j$, there is a finite subset $B_{i,j}$ that is not satisfiable. Let $T_i^j = B_{i,j} \cap T_i$. Then we claim that $S_i = \bigcup_{j\neq i} T_i^j$ axiomatizes T_i . It is enough to show that it is satisfied by the same models. Since $S_i \subseteq T_i$, it holds on any model of T_i . On the other hand, if \mathcal{M} is not a model of T_i , then it is a model of T_j for some j. But then \mathcal{M} does not satisfy $T_i^j \subseteq S_i$. (2) In the empty language, let T_0 be the theory saying that there are infinitely many distinct elements, and for each i > 0, let T_i be the theory saying that there are exactly i elements. These partition all structures, but T_0 is not finitely axiomatizable (by the same sort of argument used in E1).

E3 ans. (This is a special case of König's theorem.) Let $\{r_{\alpha}\}_{\alpha<\mathfrak{c}}$ list all elements of 2^{ω} . Let $\lambda_0 < \lambda_1 < \cdots$ be an ω -sequence of ordinals limiting to \mathfrak{c} . We build a sequence $r \in 2^{\omega}$ by columns as follows (i.e., we are using the fact that $2^{\omega} \approx 2^{\omega \times \omega}$). Make the *n*th column of *r* different from the *n*th column of r_{α} for all $\alpha < \lambda_n$. This is possible because $|\lambda_n| < |2^{\omega}| = \mathfrak{c}$. But now note that *r* is different from every element of 2^{ω} , which is a contradiction.

M1 ans. 1. Consider the theory of an infinite set with no other structure. 2. If M is prime and N is minimal, then use primeness of M to show that it elementarily embeds into N. But minimality of N shows that this embedding is onto. So $M \cong N$. 3. The structure $(\mathbb{Z}, +)$ is itself minimal: Suppose M is an elementary submodel, and n is an integer in M. Then elementarity of M shows that n is divisible in M by n, showing that $1 \in M$ and so all of \mathbb{Z} is contained in M. To see it's not prime, use omitting types to get a model N so that every element of N is divisible by some natural number > 1. Then you cannot elementarily embed \mathbb{Z} into N since 1 has nowhere to go.

M2 ans. In fields, there can be only finitely many elements satisfying a polynomial p(x). In particular, for every n, there can be only finitely many elements x so that $x^n = 1$. It follows then by compactness that there is a countable model of T containing an element of infinite order. But then you have infinitely many 2-types in T corresponding to pairs (x, y) where $y = x^n$ and $y \neq x^m$ for any m < n.

M3 ans. We build a new theory T' as follows: We include the set of elimination sentences: $\forall \bar{x} (\exists \bar{y} \psi(\bar{x}, \bar{y}) \leftrightarrow \rho(\bar{x})$. These sentences explain how the QE is witnessed. Then add the 1-quantifier theory of T into T'. We then must argue that T' is an axiomatization of T. Since $T' \subseteq T$, we need only show every model of T' is a model of T. If $\varphi := \forall \bar{x} \rho(\bar{x}) \in T$, we use the QE axioms to replace ρ by a quantifier-free version ρ' . Both T and T' agree that φ is equivalent to $\forall \bar{x} \rho'(\bar{x})$, and then we have placed this formula into T', so any model of T' is a model of φ . Arguing similarly for formulas beginning with $\exists \bar{x}$, we see that any formula in T is modeled by any model of T'.

C1 ans. Assume, for a contradiction, that there is a \emptyset' -computable function g that majorizes f. Note that $W_e = \omega$ if and only if $[0, g(e)] \subseteq W_e$, so $\emptyset' \oplus g \equiv_T \emptyset'$ can compute TOT, which contradicts the fact that $\text{TOT} \equiv_T \emptyset''$.

C2 ans. This is very similar to the proof of the Friedberg Jump Inversion theorem. Build *B* by initial segments $\beta_0 \leq \beta_1 \leq \cdots$. On even stages, we ensure that $\varphi_e^B \neq A$ as follows: if there is an *e*-split, take the first discovered *e*-split of β_{2e} and take the useful side. (If no *e*-split exists, then φ_e^B is partial or computable.) On odd stages, let $\beta_{2e+2} = \beta_{2e+1}A(e)$. Note that $B' \geq_T B \oplus \emptyset' \geq_T A$ because $B \oplus \emptyset'$ can determine the sequence $\{\beta_i\}$. For even stages, \emptyset' can determine when *e*-splits occur and using *B* you can see which side of the split was taken. Odd stages just require reading off the next bit of *B*, which is the next coded bit of *A*.

C3 ans. This should be proved using a finite injury argument. The requirements are $P_e: |W_e| = \infty \implies A \cap W_e \neq \emptyset$ and $N_e: \varphi^A \neq X$. The strategy for P_e is the same one used in the construction of a finite simple set. The *Sacks preservation* strategy should be used for N_e .