
Logic Qualifying Exam January 2023

Instructions: Do all six problems.
If you think that a problem has been stated incorrectly, mention this to

the proctor and indicate your interpretation in your solution. In such cases,
do not interpret the problem in such a way that it becomes trivial.

If you are unable to solve a problem completely, you may receive partial
credit by weakening a conclusion or strengthening a hypothesis. In this case,
include such information in your solution, so the graders know that you know
that your solution is not complete.

If you want to ask a grader a question during the exam, write out your
question on a piece of paper and hand it to a proctor, who will contact a
grader as soon as possible.

E1. Consider the following conditions on a collection of sets A ⊆ P(ω):

1. A contains all finite sets.

2. A is closed under complements, finite unions, and finite intersections.

3. If X ∈ A is infinite, then there are disjoint infinite sets Y, Z ∈ A such
that X = Y ∪ Z.

Show that if A,B ⊆ P(ω) are countable and satisfy conditions (a)–(c), then
(A,⊆) ∼= (B,⊆).

E2. Let T ⊆ 2<ω be a co-c.e. tree. Show that there is a c.e. theory D
and a bijection π between the consistent completions of D and the infinite
paths through T . Furthermore, if D is a completion of D, then it is Turing
equivalent to the corresponding path π(D).

(You may make D a propositional theory.)

E3. Let S ⊆ Z2. A tile is a set of the form [a, b]× {c} or {c} × [a, b] where
a ≤ b and c are integers. A ray is a set of the form [a,∞)×{c}, (−∞, b]×{c},
{c} × [a,∞), or {c} × (−∞, b], where a, b, and c are integers. Suppose that
for every n the set S is a disjoint union of tiles of size n. Does this entail
that S is a disjoint union of rays?
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Model Theory

M1. Let T be a theory and let M |= T be a countable model with the
following properties:

1. M is homogeneous.

2. Whenever M ⊆ N |= T is countable, there exists an elementary exten-
sion M ′ � N such that M ∼= M ′.

Show that M is a saturated model of T .

M2. Suppose that M |= T and T is totally transcendental. Let S be a
non-empty set of definable sets in M . Show that there is a definable set
X ∈ S so that whenever Y is a proper definable subset of X, either Y /∈ S
or X r Y /∈ S.

M3. Let L = {<,U} where U is a unary relation symbol and < is a binary
relation symbol. Let T0 be the axioms saying that< is a total order (note that
T0 does not mention U). Prove that there are exactly 9 complete L-theories
containing T0 which have quantifier elimination.
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Computability Theory

C1.

1. (4 points) Show that every finite Boolean combination of c.e. sets is
Turing reducible to ∅′ by a Turing functional with computably bounded
use.

2. (6 points) Show that this may fail for some ∆0
2-set A.

C2. Let I ⊆ 2ω be a countable collection of sets that is closed downwards
under Turing reducibility. Suppose X computes an enumeration {Xn}n∈ω
of I (i.e., I = {Xn : n ∈ ω}, possibly with repetitions) so that the set
F = {n : Xn is finite} is ∆2(X). Show that X can compute an enumeration
of the infinite sets in I.

C3. Build noncomputable sets A,B ≤T ∅′ such that if G is 2-generic and Y
is computable from both A⊕G and B ⊕G, then Y ≤T G.

Hint: Recall that G is 2-generic if it meets or avoids every Σ0
2 set of binary

strings. In the verification, use the Σ0
2 sets

Ue,i = {σ ∈ 2<ω : (∃n) ϕA⊕σe (n) ↓ 6= ϕB⊕σi (n) ↓}.

Build A and B so that these sets are useful.
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Sketchy Answers or Hints

E1 ans. We prove this using a a back-and-forth construction. Denote by
X0 the set X and let X1 = X. At stage n + 1 of the construction we
can assume that we have built finite sequences A0, . . . An−1 and B0, . . . , Bn−1
so that for every Boolean vector α ∈ 2n we have that the cardinality of⋂
i<nA

α(i)
i equals the cardinality of

⋂
i<nB

α(i)
i . If n is even we go forth: Let

An be the first set that has not yet appeared in our sequence. Now for each
α ∈ 2n we can find a set Bα

n ⊆
⋂
i<nB

α(i)
i in B so that that An ∩

⋂
i<nA

α(i)
i

has the same cardinality as Bα
n ∩

⋂
i<nB

α(i)
i and An ∩

⋂
i<nA

α(i)
i has the

same cardinality as Bα
n ∩

⋂
i<nB

α(i)
i . We take the union of all Bα

n to form

Bn. Since {
⋂
i<nA

α(i)
i : α ∈ 2n} partitions ω we can show that the new

sequences A0, . . . An and B0, . . . Bn have the same property with respect to
all α ∈ 2n+1. At odd stages we do the back direction.

E2 ans. Our language will have propositional variables {pn}n∈ω. For σ ∈ 2<ω

of length n, let ϕσ = p
σ(0)
0 ∧pσ(1)1 ∧· · · pσ(n−1)n−1 , where p0i = ¬pi and p1i = pi. Let

D = {¬ϕσ : σ /∈ T}, which is a c.e. theory. Any consistent completion D of D
determines the values of the propositional variables and is Turing equivalent
to XD = {n : pn ∈ D}. By choice of D, XD is a path through T . Conversely,
any infinite path through T corresponds to a consistent assignment of truth
values to the variables, hence a completion of D.

E3 ans. This can be done with propositional compactness, but I will use
topological compactness. Let Tn be the tiling of S with tiles of size n. Let
Xn ∈ 2ω code Tn as follows:

Xn = {〈〈a, b〉, 〈c, d〉〉 : 〈a, b〉, 〈c, d〉 ∈ S and they are in the same tile in Tn}.

By compactness, {Xn} has a convergent subsequence, say converging to X.
The following is the key point, and takes a little checking: as a limit of tilings
of S with bigger and bigger tiles, X must code a tiling of S with rays and
“double rays” (i.e., whole rows or columns). The double rays can be split
into rays, giving us the desired tiling.
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M1 ans. We first observe that every n-type consistent with T is realized
in M : Given any p consistent with T , build a countable model A realizing
p. Since A ≡M , there is some N which is an elementary extension of both.
And with downward Skolem, N can be chosen countable. Then condition
2 says there’s an elementary extension of this N which is isomorphic to M .
So, M realizes p. It follows from homogeneity and that all types are realized
that M is saturated: Given a type p(x, ā) over a tuple ā in M , we know that
M |= p(c, d̄) for some c, d̄ ∈ M . But then tp(ā) = tp(d̄), so homogeneity
gives some element e so that tp(e, ā) = tp(c, d̄) = p. So, p is realized and M
is saturated.

M2 ans. Let A ∈ S (since S is non-empty). If A works as our X, yay. If
not, take a Y0 ∈ S and Y1 ∈ S so that Y0 t Y1 = A. Repeat for these Yi’s.
This process must end at some point because otherwise we build an infinite
binary tree of formulas over M . Being totally transcendental means that this
cannot happen.

M3 ans. Let T be a completion of T0 with QE and suppose M |= T Observe
that every single element in U in M satisfies the same QF-type. So, if U is
finite in A, then the first and last elements satisfy the QF-type, but not the
same type, unless U has size 0 or 1. Thus U is either size 0, 1, or∞. Same for
¬U . Next, observe that if U is infinite, then U is dense without endpoints.
Again, being infinite, there are x < y ∈ U with something between them.
Thus every pair must have something in U between them. Similarly, there is
an element which is not an endpoint, so they are all not an endpoint. Same
for ¬U . Next, if U has size 1 and is {a}, then a must be the least or greatest
element. This is because any x, y ∈ ¬U must have the same type, so you
can’t have e.g., x < a < y. Next, consider the case where both U and ¬U
are infinite. If x < y < z with x, z ∈ U and y ∈ ¬U , then every pair x, z ∈ U
must be as such. Same with roles reversed. So, there are 3 cases: They are
dense-co-dense, every element of U is less than every element of ¬U or vice
versa. Writing out the possibilities consistent with the above, you should
find exactly 9:

• U is empty and < is a DLOW

• ¬U is empty and < is a DLOW
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• U is a singleton which is the least element. ¬U is a DLOW

• U is a singleton which is the greatest element. ¬U is a DLOW

• ¬U is a singleton which is the least element. U is a DLOW

• ¬U is a singleton which is the greatest element. U is a DLOW

• U and ¬U are both DLOW’s and they are dense co-dense.

• U and ¬U are both DLOW’s with a ∈ U , b /∈ U implying a < b.

• U and ¬U are both DLOW’s with a ∈ ¬U , b ∈ U implying a < b.

C1 ans.

1. Every c.e. set is in fact m-reducible to the halting problem K, so a
Boolean combination of c.e. sets requires only a fixed finite number of
calls to K.

2. Build a ∆0
2-set A such that A(〈e, i〉) diagonalizes against the reduc-

tion Φe with computable use bound ϕi.

C2 ans. Given {Xn}n∈ω, build a new list {Yn}n∈ω such that Y〈m,t〉 is com-
puted as follows: Copy Xm as long as m /∈ Fs for s ≥ t. If we see m ∈ Fs
for some s ≥ t, then make Y〈m,t〉 cofinite by putting every remaining element
into it. (Note that all cofinite sets are in I.) If m /∈ F , then there is a large
enough t such that m /∈ Fs for all s ≥ t, so Y〈m,t〉 = Xm.

C3 ans. We build sets A =
⋃
s∈ω αs and B =

⋃
s∈ω βs using an initial

segment construction. Start with α0 = β0 = ∅. At even stages s = 2e we
ensure that A and B are not computable: for δ ∈ {α, β} if ϕe(|δs|) ↓= 1 then
set δs+1 = δs0 and otherwise set δs+1 = δs1. At odd stages s = 2(e, i, j) + 1
let j code the finite binary string σ. If there are α � αs, β � βs, τ � σ, and
natural number n such that ϕα⊕τe (n) ↓ 6= ϕβ⊕τi (n) ↓ then let αs+1 = α and
βs+1 = β for the least such α and β. Otherwise set αs+1 = αs and βs+1 = βs.
If G is 2-generic and X = ϕA⊕Ge = ϕB⊕σi the G must avoid Ue,i, say by its
initial segment σ. Let j be σ’s code and let s = 2(e, i, j) + 1. Now X is
computable as X(n) = ϕα⊕τe (n) for the least α � αs, β � βs, τ � σ such that
ϕα⊕τe (n) ↓.


