Instructions: Do all six problems.

If you think that a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

If you are unable to solve a problem completely, you may receive partial credit by weakening a conclusion or strengthening a hypothesis. In this case, include such information in your solution, so the graders know that you know that your solution is not complete.

If you want to ask a grader a question during the exam, write out your question on a piece of paper and hand it to a proctor, who will contact a grader as soon as possible.

E1. Consider the following conditions on a collection of sets $\mathcal{A} \subseteq \mathcal{P}(\omega)$:

- 1. \mathcal{A} contains all finite sets.
- 2. \mathcal{A} is closed under complements, finite unions, and finite intersections.
- 3. If $X \in \mathcal{A}$ is infinite, then there are disjoint infinite sets $Y, Z \in \mathcal{A}$ such that $X = Y \cup Z$.

Show that if $\mathcal{A}, \mathcal{B} \subseteq \mathcal{P}(\omega)$ are countable and satisfy conditions (a)–(c), then $(\mathcal{A}, \subseteq) \cong (\mathcal{B}, \subseteq)$.

E2. Let $T \subseteq 2^{<\omega}$ be a co-c.e. tree. Show that there is a c.e. theory D and a bijection π between the consistent completions of D and the infinite paths through T. Furthermore, if \overline{D} is a completion of D, then it is Turing equivalent to the corresponding path $\pi(\overline{D})$.

(You may make D a propositional theory.)

E3. Let $S \subseteq \mathbb{Z}^2$. A tile is a set of the form $[a, b] \times \{c\}$ or $\{c\} \times [a, b]$ where $a \leq b$ and c are integers. A ray is a set of the form $[a, \infty) \times \{c\}, (-\infty, b] \times \{c\}, \{c\} \times [a, \infty), \text{ or } \{c\} \times (-\infty, b], \text{ where } a, b, \text{ and } c \text{ are integers. Suppose that for every <math>n$ the set S is a disjoint union of tiles of size n. Does this entail that S is a disjoint union of rays?

Model Theory

M1. Let T be a theory and let $M \models T$ be a countable model with the following properties:

- 1. M is homogeneous.
- 2. Whenever $M \subseteq N \models T$ is countable, there exists an elementary extension $M' \succ N$ such that $M \cong M'$.

Show that M is a saturated model of T.

M2. Suppose that $M \models T$ and T is totally transcendental. Let S be a non-empty set of definable sets in M. Show that there is a definable set $X \in S$ so that whenever Y is a proper definable subset of X, either $Y \notin S$ or $X \smallsetminus Y \notin S$.

M3. Let $L = \{<, U\}$ where U is a unary relation symbol and < is a binary relation symbol. Let T_0 be the axioms saying that < is a total order (note that T_0 does not mention U). Prove that there are exactly 9 complete L-theories containing T_0 which have quantifier elimination.

Computability Theory

C1.

- 1. (4 points) Show that every finite Boolean combination of c.e. sets is Turing reducible to \emptyset' by a Turing functional with computably bounded use.
- 2. (6 points) Show that this may fail for some Δ_2^0 -set A.

C2. Let $I \subseteq 2^{\omega}$ be a countable collection of sets that is closed downwards under Turing reducibility. Suppose X computes an enumeration $\{X_n\}_{n \in \omega}$ of I (i.e., $I = \{X_n : n \in \omega\}$, possibly with repetitions) so that the set $F = \{n : X_n \text{ is finite}\}$ is $\Delta_2(X)$. Show that X can compute an enumeration of the infinite sets in I.

C3. Build noncomputable sets $A, B \leq_T \emptyset'$ such that if G is 2-generic and Y is computable from both $A \oplus G$ and $B \oplus G$, then $Y \leq_T G$.

Hint: Recall that G is 2-generic if it meets or avoids every Σ_2^0 set of binary strings. In the verification, use the Σ_2^0 sets

$$U_{e,i} = \{ \sigma \in 2^{<\omega} \colon (\exists n) \; \varphi_e^{A \oplus \sigma}(n) \downarrow \neq \varphi_i^{B \oplus \sigma}(n) \downarrow \}.$$

Build A and B so that these sets are useful.

Sketchy Answers or Hints

E1 ans. We prove this using a a back-and-forth construction. Denote by X^0 the set \overline{X} and let $X^1 = X$. At stage n + 1 of the construction we can assume that we have built finite sequences A_0, \ldots, A_{n-1} and B_0, \ldots, B_{n-1} so that for every Boolean vector $\alpha \in 2^n$ we have that the cardinality of $\bigcap_{i < n} A_i^{\alpha(i)}$ equals the cardinality of $\bigcap_{i < n} B_i^{\alpha(i)}$. If n is even we go forth: Let A_n be the first set that has not yet appeared in our sequence. Now for each $\alpha \in 2^n$ we can find a set $B_n^{\alpha} \subseteq \bigcap_{i < n} B_i^{\alpha(i)}$ in \mathcal{B} so that that $A_n \cap \bigcap_{i < n} A_i^{\alpha(i)}$ has the same cardinality as $B_n^{\alpha} \cap \bigcap_{i < n} B_i^{\alpha(i)}$ and $\overline{A_n} \cap \bigcap_{i < n} A_i^{\alpha(i)}$ has the same cardinality as $\overline{B_n^{\alpha}} \cap \bigcap_{i < n} B_i^{\alpha(i)}$. We take the union of all B_n^{α} to form B_n . Since $\{\bigcap_{i < n} A_i^{\alpha(i)} : \alpha \in 2^n\}$ partitions ω we can show that the new sequences A_0, \ldots, A_n and B_0, \ldots, B_n have the same property with respect to all $\alpha \in 2^{n+1}$. At odd stages we do the back direction.

E2 ans. Our language will have propositional variables $\{p_n\}_{n\in\omega}$. For $\sigma \in 2^{<\omega}$ of length n, let $\varphi_{\sigma} = p_0^{\sigma(0)} \wedge p_1^{\sigma(1)} \wedge \cdots p_{n-1}^{\sigma(n-1)}$, where $p_i^0 = \neg p_i$ and $p_i^1 = p_i$. Let $D = \{\neg \varphi_{\sigma} : \sigma \notin T\}$, which is a c.e. theory. Any consistent completion \overline{D} of D determines the values of the propositional variables and is Turing equivalent to $X_{\overline{D}} = \{n : p_n \in \overline{D}\}$. By choice of $D, X_{\overline{D}}$ is a path through T. Conversely, any infinite path through T corresponds to a consistent assignment of truth values to the variables, hence a completion of D.

E3 ans. This can be done with propositional compactness, but I will use topological compactness. Let T_n be the tiling of S with tiles of size n. Let $X_n \in 2^{\omega}$ code T_n as follows:

 $X_n = \{ \langle \langle a, b \rangle, \langle c, d \rangle \} \colon \langle a, b \rangle, \langle c, d \rangle \in S \text{ and they are in the same tile in } T_n \}.$

By compactness, $\{X_n\}$ has a convergent subsequence, say converging to X. The following is the key point, and takes a little checking: as a limit of tilings of S with bigger and bigger tiles, X must code a tiling of S with rays and "double rays" (i.e., whole rows or columns). The double rays can be split into rays, giving us the desired tiling. **M1 ans.** We first observe that every *n*-type consistent with *T* is realized in *M*: Given any *p* consistent with *T*, build a countable model *A* realizing *p*. Since $A \equiv M$, there is some *N* which is an elementary extension of both. And with downward Skolem, *N* can be chosen countable. Then condition 2 says there's an elementary extension of this *N* which is isomorphic to *M*. So, *M* realizes *p*. It follows from homogeneity and that all types are realized that *M* is saturated: Given a type $p(x, \bar{a})$ over a tuple \bar{a} in *M*, we know that $M \models p(c, \bar{d})$ for some $c, \bar{d} \in M$. But then $tp(\bar{a}) = tp(\bar{d})$, so homogeneity gives some element *e* so that $tp(e, \bar{a}) = tp(c, \bar{d}) = p$. So, *p* is realized and *M* is saturated.

M2 ans. Let $A \in S$ (since S is non-empty). If A works as our X, yay. If not, take a $Y_0 \in S$ and $Y_1 \in S$ so that $Y_0 \sqcup Y_1 = A$. Repeat for these Y_i 's. This process must end at some point because otherwise we build an infinite binary tree of formulas over M. Being totally transcendental means that this cannot happen.

M3 ans. Let T be a completion of T_0 with QE and suppose $M \models T$ Observe that every single element in U in M satisfies the same QF-type. So, if U is finite in A, then the first and last elements satisfy the QF-type, but not the same type, unless U has size 0 or 1. Thus U is either size 0, 1, or ∞ . Same for $\neg U$. Next, observe that if U is infinite, then U is dense without endpoints. Again, being infinite, there are $x < y \in U$ with something between them. Thus every pair must have something in U between them. Similarly, there is an element which is not an endpoint, so they are all not an endpoint. Same for $\neg U$. Next, if U has size 1 and is $\{a\}$, then a must be the least or greatest element. This is because any $x, y \in \neg U$ must have the same type, so you can't have e.g., x < a < y. Next, consider the case where both U and $\neg U$ are infinite. If x < y < z with $x, z \in U$ and $y \in \neg U$, then every pair $x, z \in U$ must be as such. Same with roles reversed. So, there are 3 cases: They are dense-co-dense, every element of U is less than every element of $\neg U$ or vice versa. Writing out the possibilities consistent with the above, you should find exactly 9:

- U is empty and < is a DLOW
- $\neg U$ is empty and < is a DLOW

- U is a singleton which is the least element. $\neg U$ is a DLOW
- U is a singleton which is the greatest element. $\neg U$ is a DLOW
- $\neg U$ is a singleton which is the least element. U is a DLOW
- $\neg U$ is a singleton which is the greatest element. U is a DLOW
- U and $\neg U$ are both DLOW's and they are dense co-dense.
- U and $\neg U$ are both DLOW's with $a \in U, b \notin U$ implying a < b.
- U and $\neg U$ are both DLOW's with $a \in \neg U, b \in U$ implying a < b.

C1 ans.

- 1. Every c.e. set is in fact *m*-reducible to the halting problem K, so a Boolean combination of c.e. sets requires only a fixed finite number of calls to K.
- 2. Build a Δ_2^0 -set A such that $A(\langle e, i \rangle)$ diagonalizes against the reduction Φ_e with computable use bound φ_i .

C2 ans. Given $\{X_n\}_{n\in\omega}$, build a new list $\{Y_n\}_{n\in\omega}$ such that $Y_{\langle m,t\rangle}$ is computed as follows: Copy X_m as long as $m \notin F_s$ for $s \ge t$. If we see $m \in F_s$ for some $s \ge t$, then make $Y_{\langle m,t\rangle}$ cofinite by putting every remaining element into it. (Note that all cofinite sets are in *I*.) If $m \notin F$, then there is a large enough *t* such that $m \notin F_s$ for all $s \ge t$, so $Y_{\langle m,t\rangle} = X_m$.

C3 ans. We build sets $A = \bigcup_{s \in \omega} \alpha_s$ and $B = \bigcup_{s \in \omega} \beta_s$ using an initial segment construction. Start with $\alpha_0 = \beta_0 = \emptyset$. At even stages s = 2e we ensure that A and B are not computable: for $\delta \in \{\alpha, \beta\}$ if $\varphi_e(|\delta_s|) \downarrow = 1$ then set $\delta_{s+1} = \delta_s 0$ and otherwise set $\delta_{s+1} = \delta_s 1$. At odd stages s = 2(e, i, j) + 1 let j code the finite binary string σ . If there are $\alpha \succeq \alpha_s, \beta \succeq \beta_s, \tau \succeq \sigma$, and natural number n such that $\varphi_e^{\alpha \oplus \tau}(n) \downarrow \neq \varphi_i^{\beta \oplus \tau}(n) \downarrow$ then let $\alpha_{s+1} = \alpha$ and $\beta_{s+1} = \beta$ for the least such α and β . Otherwise set $\alpha_{s+1} = \alpha_s$ and $\beta_{s+1} = \beta_s$. If G is 2-generic and $X = \varphi_e^{A \oplus G} = \varphi_i^{B \oplus \sigma}$ the G must avoid $U_{e,i}$, say by its initial segment σ . Let j be σ 's code and let s = 2(e, i, j) + 1. Now X is computable as $X(n) = \varphi_e^{\alpha \oplus \tau}(n)$ for the least $\alpha \succeq \alpha_s, \beta \succeq \beta_s, \tau \succeq \sigma$ such that $\varphi_e^{\alpha \oplus \tau}(n) \downarrow$.