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1 Some references

e Syllabus:
http://www.math.wisc.edu/graduate/guide-qe

e Previous years’ qualifying exams:

http://www.math.wisc.edu/~miller/old /qual/index.html

e Miller’s Moore style notes:
http://www.math.wisc.edu/~miller/old /m771-98 /logintro.pdf

e Kunen’s notes:

http://www.math.wisc.edu/~kunen/770.html
e Shoenfield’s Mathematical Logic

e Cohen’s Set theory and the continuum hypothesis, Chapter 1

2 First order logic

2.1 Syntax and semantics

Suppose T is theory and ¢ is a sentence in some first order language L. We write
T ¢ if ¢ can be formally deduced from T’; i.e. there is a proof of ¢ in which
the unjustified assumptions are members of 7. We’ll never go into the details
of the exact definition of a formal proof and assume that the reader has seen
at least one such definition. The only important thing to remember is that the
notion of a formal proof is effective in that one can write a computer program
to check if a sequence of sentences forms a formal proof.

A first order structure M has a universe, which we’ll denote by M, and
names for some members and finitary relations and functions over this universe.
The signature of M is the set of all names for constants, relations and functions
and these determine the non logical vocabulary of a first order language L. We
sometimes say that M is an L-structure.



A formula ¢(Z) is true/valid in a structure M at a tuple @ € M, and we
write M E ¢(a@) if ¢(a) is actually true in M when its non logical symbols are
interpreted in the appropriate way. If T' is a set of sentences (formulas with no
free variables), we write M E T, read M models T, if every sentence in T is
true in M. We write T F ¢ if every model of T is also a model of ¢. In the
case when T = 0, we write F ¢ and such sentences ¢ are called (logically) valid.
The complete theory of a structure M, Th(M), is the set of all sentences true
in M.

The completeness theorem says that T F ¢ is same as T+ ¢ and therefore
this is a finitary notion. A more informative version of this theorem says that
if T is consistent; i.e., not all sentences can be formally derived from 7', then T
has a model with a universe of size not more than maxz(|T|,w) where |T| is the
size of T'. A much more interesting theorem is the following:

Theorem 1 (Compactness theorem) A first order theory T has a model iff
every finite subset of T has a model.

2.2 Lowenheim-Skolem-Tarski theorems

Let M and A be two first order structures with same signature. M is isomorphic
to N, written M = N if there is a bijection between M and N that preserves
the interpretation of their signature. We say that M and A are elementarily
equivalent, written M = N if they have the same theories; i.e. a sentence is
true in one iff it is true in the other. We say that M is a substructure of N,
and write M C N if M C N and the constants, relations, functions in M
are obtained by restricting the corresponding things in A. If, in addition to
M C N, every formula with parameters from M is true in M iff it’s true in NV,
we say that M is an elementary substructure of A" and write M < N. Clearly,
each one of M = N and M < N implies M = N. The following is a basic tool
to test if a given structure is an elementary substructure of another structure:

Theorem 2 (Tarski-Vaught criterion) Let M C N. Suppose for each for-
mula ¢(z, ¢) with = free and with parameters € from M, whenever there is some
b € N such that N E ¢(b,C) there is also some a € M such that N E ¢(a,?).
Then M is an elementary substructure of N.

One can use the last criterion to readily establish the following:

Theorem 3 (Downward LST) Let M be an infinite first order structure over
a language L. Let A C M and suppose max(w,|L|,|A]) < k < |M|. Then there
is an elementary substructure N' of M of size k whose universe contains A.

The next theorem follows easily from the downward LST and the compact-
ness theorem.

Theorem 4 (Upward LST) Let M be an infinite first order structure over a
language L. Let k > max(|M|,|L|,w). Then there is an elementary superstruc-

ture N of M of size k.



2.3 Definability and automorphisms

Let M be a structure. An m-ary relation R on M is definable (without pa-
rameters) in M if there is a formula ¢(Z) such that R = {@M F ¢(a)}. It is
definable with parameters in M if for some formula ¢(Z, 7) and elements b € M,
R ={@M E ¢(@,b)}. As an exercise, describe the definable (with and without
parameters) subsets of the field of real numbers, (R,0,1,+,.). Definability of
an n-ary function on M is same as the definability of corresponding (n + 1)-ary
relation on M. An automorphism of M is a bijection on M that preserves all
constants, functions and relations in the signature of M. The following is an
easy but useful fact for establishing undefinability.

Theorem 5 Definable objects in M are fixed under every automorphism of
M. If parameters are being used, then the previous statement holds for all
automorphisms that fix the parameters.

2.4 Undefinability of truth

For every sufficiently rich structure, it is impossible to code its truth predicate
as a parameter free definable relation over the structure. We state the theorem
for arithemtic (w, 1,4+, .). Let "¢ denote the Godel number of a formula ¢. Let

T={"¢"w,1,+,.) E ¢}

Theorem 6 There is no formula T(x), which defines T in (w,1,+,.).

2.5 Completeness, categoricity and axiomatizability

A theory is said to be k-categorical if all of its models of size k are isomorphic.
It is complete if for each sentence ¢ it proves either ¢ or its negation —¢. If a
theory T is k-categorical for some x > max(|T|,w) then it is complete.

For a language L, a class of L-structures C is said to be axiomatizable if
there is an L-theory T such that C = {M|M E T}. An example of a non
axiomatizable class is the class of all finite structures (over any language L).
Proof: If T is any theory with arbitrarily large finite models then T has an
infinite model by compactness theorem.

2.6 Quantifier elimination

A theory T admits quantifier elimination if every formula in the language of T'
is equivalent, relative to T', to a quantifier free formula. If a theory T decides
every quantifier free sentence in its language and admits quantifier elimination
then it is complete. For examples of the application of this idea see the proof
of the completeness and decidability of Presburger arithemtic and the theory of
real closed fields.



2.7 Back and forth constructions

Suppose (L, <) is a countable dense linear order with no largest or least element.
We want to show that there is essentially only one such linear order, viz. the
rationals (Q, <). Enumerate L = {aj,as,...} and Q = {b1,bs,...}. Start by
sending a; to b;. To decide where to send a,, look at the position of a, with
respect to the points in L that have already been mapped into @ and send it to
some b,,, which has the same position with respect to the images of those points.
To ensure that the limiting map is a bijection, take care of a,, and b,, by step
2n. This construction of an isomorphism between countable dense linear orders
without end points is called a back and forth construction. Such constructions
can be used to establish the w-categoricity of theories like atomless boolean
algebras and random graphs.

3 Computable sets

3.1 Computably enumerable sets

A set is computably enumerable (c.e.) iff it is the range of some computable
function iff it is the domain of some partial computable function iff it is the
projection of some computable subset of w?. A set is computable iff both it and
its complement are c.e. The halting problem is c.e. but not computable.

3.2 Decidability and computably axiomatizable theory

A countable theory T, is decidable if the set {¢|T + ¢} is computable. T is
computablty axiomatizable if it has a computable set of axioms. PA (Peano
arithmetic) is an example of a computably axiomatizable undecidable theory.

Theorem 7 (Godel’s first incompleteness theorem) FEvery computably az-
tomatizable extension of PA is incomplete.

4 Well orderings and transfinite recursion

A linear order (L, <) is a well order iff every subset of L has a <-least element.
An ordinal is the order type of a well order. For basic ordinal arithmetic see
Kunen’s book. We only mention transfinite induction here.

Theorem 8 (Transfinite recursion) Let k be a cardinal, s be a set and sup-
pose G is a function from sets to sets. Then there is a unique function f with
domain k such that f(0) = s and for every ordinal o < K, f(a) = G(f | ).
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1 Examples on first order logic

(Jan 2012) Prove that the set of validities in the language with two unary
operation symbols is undecidable. You may assume without proof that
the set of validities in the language with one binary relation symbol is
undecidable.

(Jan 2012) Suppose T; for i < n (with n < w) are L-theories such that
every L-structure M satisfies exactly one of the T;. Prove that each T;
is finitely axiomatizable If n = w must this still be true? Prove or give a
counterexample.

(Aug 2011) Let T = Th(Z,+). Prove that T has uncountably many
pairwise nonisomorphic countable models

(Jan 2011) Let L = {E}, where E is a binary relation symbol. Let ¥ in
L be the axioms that say that E is an equivalence relation. Let ¢ be a
sentence of L which is consistent with X. Prove that ¢ is true in some
finite model of X.

(Jan 2011) Let L be the language with two non-logical symbols f and g.
Let T declare that f and g are bijective functions which commute with
each other, as well as the axiom scheme stating for all m and n integers
(including negative ones) which are not both zero that Vz(f™(¢" (z)) = ).
Show that 7" is complete, decidable, and not finitely axiomatizable.

(Aug 2010) Let L be the language containing one binary relation symbol.
A graph is a symmetric irreflexive binary relation. It is n-colorable iff
there is a map from its universe into n such that no two elements in the
relation are assigned the same value.

(a) Show that there is a first order L-theory T whose models are exactly
the 3-colorable graphs.

(b) Prove that T is not finitely axiomatizable.

(Jan 2010) The class of simple groups (groups with no non trivial normal
subgroup) is not axiomatizable.



(Aug 2009) Let B be a disjoint union of compact intervals with rational end
points. Let A = BN Q. Then A = (A, <) is an elementary substructure
of B=(B,<).

(Jan 2009) For any set A, show that there is a collection C of subsets of
A such that (a) A finite subset of A is in C iff it has even size and (b)
Whenever X, Y are disjoint subsets of A, X UY € C iff either X,Y € C or
X, Y £C.

Hint: Use compactness theorem.

(Aug 2008) Let A, B be disjoint infinite sets of integers and let M =
(M, R) be the structure with universe M = AU BU (A x B) and ternary
relation R = {(a,b,(a,b))|la € A,b € B}. Show that T = Th(M) doesn’t
have a finite set of axioms.

Hint: Write an infinite list of axioms that axiomatizes T and show that
no finite fragment is enough.

(Aug 2008) Let T be a consistent axiomatizable theory with only finitely
many complete extensions in the same language. Show that T is decid-
able. (Here, a theory is a set of sentences closed under deduction, and
it is axiomatizable if it is the deductive closure of a computable set of
sentences.)

(Jan 2007) PA denotes Peano Arithemtic. Let M F PA and let pr(M) =
{p € M|M E p is prime }. Show the following:

(a) M| = lpr(M).

(b) For every S C pr(M), there is an elementary extension A/ of M such
that there is some a € M for which S = {p € pr(M)| p divides a }.

(¢) Every complete extension of PA has continuum many models.

(Aug 2006) A X5 formula has the form 37Vy¢$ where ¢ is quantifier free.
A Y3 formula has the form 3zVy3Z¢ with ¢ quantifier free.

(a) Show that for 3o sentences ¢, (w, <) F ¢ iff (w+ w, <) F ¢.

(b) Give an example of a 33 sentence ¢ for which the above fails.

(

Jan 2006) Characterize the definable subsets of (w, <).

(Aug 2004) Show that every non standard model of true arithmetic, viz
A=Th(w,<,0,85,4+,.), has a substructure which is not a model of A.

(Jan 2003) Let {U,|n € w} be unary relation symbols. Let T be a theory
that says that Uy 2 U; 2 Uz 2 ... and that each one of U, \Up+1) as well
as complement of Uy is infinite. Show that T is complete.

Consider the w-categorical theories T}, = set of sentences in T in which
U,, doesn’t occur for n > k.

(Aug 2002) Show that Th(R,Q, <) (R, Q are the sets of reals and ratio-
nals) is w-categorical and hence complete.



(Jan 2002) Let G = (G, E) be a directed graph (F is a binary relation).
The out-degree of a vertex in G is the number of outgoing edges from it.
Show that the class of directed graphs all of whose vertices have finite
out-degree is not axiomatizable.

(Aug 2001) Suppose that a theory T has infinitely many distinct con-
sistent completions. Show that T has a completion which is not finitely
axiomatizable.

(Aug 2001) List all complete theories of one equivalence relation on an
infinite universe.

(Jan 2001, Jan 2000) Show that addition is not definable (even with pa-
rameters) in (N, .) and (Q, <).

(Aug 1996) Describe a finite theory T such that for each n > 0, T has a
model of size 2™ and no model of any other finite size.



1

Logic SEP: Day 2

July 17, 2011

Examples on basic set theory

(Jan 2011) If o and 8 are non zero ordinals, show that there is a largest
ordinal § that divides both of them. Here § divides « if a@ = é~ for some

5.

(Jan 2010) Let X be any set and f : P(X) — P(X) be order preserving,
ie., forany A, B € P(X),if A C B, then f(A) C f(B). Prove there exists
Y C X such that f(Y) =Y.

(Aug 2009) For each prove or disprove:

(a) There exists a set D of reals with the same order type as the rationals
which is a closed subset of the real number line.

(b) There exists a set D of reals with the same order type as the rationals
which is discrete, i.e., no point of D is a limit point of D.

(c) There exists a set D of reals with the same order type as the rationals
such that every point of D is a limit point of D but only from below and
not above.

(Jan 2009) In this problem, a real-valued function means a partial function
F with dom(F) C R and ran(F) C R; then, as a set, F C R%. Call such an
F monotonic iff it satisfies either Va1, zo € dom(F)(z1 < 22 — F(z1) <
F(x3)) or V1,22 € dom(F)(x1 < x2 — F(x1) > F(x2)). Assuming the
Continuum Hypothesis, prove that there is a real-valued function G such
that dom(G) = R and G N F is countable for all monotonic real-valued
functions F.

(Aug 2008) Prove of disprove: A linear order L is a well order iff every
suborder of L is isomorphic to an initial segment of L.

(Aug 2007) Show that every uncountable subset of reals contains an order
isomorphic copy of rationals.

(Jan 2007) If (X, <) is totally ordered set, let I(X, <) be the set of strictly
increasing functions f: X — X (i.e. f(z) < f(y) whenever = < y).

(a) Prove that |I(R, <)| = 2% (where < is the usual order).

(b) Give an example of a total order (X, <) satisfying |X| = 2¢ and
I1(X,<)| =22".



(Aug 2005) Let A be a set totally ordered by <, and assume that in
A, there are no increasing or decreasing wi-sequences, and no subsets
isomorphic to the rationals. Prove that A is countable.

(Jan 2005) Prove that the Continuum Hypothesis is equivalent to the
statement that there is a subset A C R of size w; such that both A and
R\ A meet every perfect subset of R. A set is perfect iff it is closed and
infinite and has no isolated points.

(Aug 2004) Suppose {4, |n € w} is a sequence of infinite sets. Prove there
is a sequence {B,|n € w} such that

(1) B, N By, = ¢ for each n # m, and

(2) B, C A, and |B,,| = |A,] for each n.

(Jan 2004) If F C M\, say that F covers ) iff for all a, 3 < A\ there is
an f € F such that either f(a) = 8 or f(8) = «. Let x be any infinite
cardinal Prove that k™ can be covered by a family of x many functions,
but not by any family of fewer than x functions.

(Aug 2003) Prove that there are countable Cy,, C R for a < 2 such that
C,, and Cj3 are not isomorphic (with respect to the usual order on the real
numbers) whenever a < 8 < 2¢.

(Aug 2002) Let k be a cardinal with w < k < 2“. Prove that the following
are equivalent:

(1) For all X C R with |X| = &, there is a ¢ € Q such that [ XN (—o0,q)| =
[ X N (q,+00)| = k.

(2) cf (k) > w.

(Jan 2002) Show that there is a subset of plane which meets every circle
at exactly three points.

(Jan 2001) Prove that every countable ordinal has the same order type as
a closed set of reals.

(Aug 1999) Let D, for n € w, be a decreasing sequence of subsets of the
plane R2. Assume that each D,, is dense (i.e., meets every nonempty open
set). Prove that there is a dense subset E of plane such that each F\D,,
is finite.

(Aug 1998) Prove that there is an additive subgroup of the reals which is
totally imperfect, ie. it and its complement intersect every uncountable
closed set of reals.

(Aug 1995) Let R be the set of real numbers. Prove that there is a function
f : R — R such that f maps every perfect subset of R onto R. We say
P C R is perfect iff it is closed, non-empty, and has no isolated points (for
example, the Cantor set, or any interval).
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Examples on basic recursion theory

(Aug 2010) Show that there is a computable group operation on w whose
center is not computable.

(Aug 2009) For an abelian group G and prime p we say that G is p-divisible
if for every x € G there is a y € G such that py = z. Prove that there
is a computable G C Q which is a subgroup of (Q,+) such that {p|G is
p-divisible } is not computable.

(Jan 2009) Show that there is a computable equivalence relation on w
such that all of its equivalence classes are finite and the set of sizes of
these equivalence classes is not computable.

(Jan 2004) Let X be the theory of infinite abelian groups plus the axiom
Ve(zx +x4+2=0Va+x=0). Prove that ¥ is decidable.

(Aug 2003) Let L = {<,U} where < is a binary predicate and U is a
unary predicate. Let T be an L-theory which says that < is a dense linear
order without end points and U is closed downward; i.e., for all x < y,
y € U implies x € U.

(a) Up to isomorphism how many countable models does T have?

(b) Show that T is decidable.

(Aug 2003) Give an example of a computable f : w — w such that
{f™(0)|n > 1} is not computable.

(jan 2003) Let S be a uniformly computable sequence of computable sets;
ie., S = {An|m € w} where the map (m,n) — xa,, (n) is computable.
Let B be the set of all boolean combination of sets in S. Then there is a
computable set which is not in B.

(Aug 2002) Show that the theory of (C,+,.,exp) is undecidable. Here,
exp(z) = e*.

(Aug 2001) Let T be the theory of one infinite, coinfinite unary relation
U. Show that T is decidable.



(Aug 2000) Call a real number r computable iff the sequence of digits
in the decimal representation of r is computable. Prove that there is a
computable function f : w — w\{0} such that > ﬁ is finite and not
computable.

(Aug 1998) Let T be a finitely axiomatizable theory in a finite language
L. Assume that for each sentence 6 of L, either T'U {6} has a finite model
or T'U {6} is inconsistent. Prove that T is decidable.

(Aug 1996) Let L = {<} U {c¢,l¢ € Q}, where Q is the set of rationals.
Let A be the natural model for L; that is, A = Q, each ¢, is interpreted
as ¢, and < is interpreted as the usual order on rationals. Prove that the
theory of A is decidable.

(Aug 1995) Let L be the language consisting of =, two binary functions,
+,., and one unary function, f. Let A be the structure whose domain
of discourse is the set of real numbers, where +, . are interpreted as the
usual addition and multiplication, and f is interpreted as f(z) = sinz.
Prove that the theory of A is undecidable.

(Jan 1994) For any theory T let F be the set of all sentences in the language
of T which are true in some finite model of T". Assume the language of T
is recursive.

(a) If T is finitely axiomatizable show F is recursively enumerable.

(b) If T is decidable show F' is recursively enumerable. Warning: The
language of T" might be infinite and even if it is finite, T" might not be
finitely axiomatizable.

(c) Give an example of a recursively axiomatizable T in the language of
pure equality such that F' is not recursively enumerable.

(Jan 1987) Let L = 0: the empty language. So L-formulas can only use
equality symbol. Show that the set of all L-sentences which are true in
every L-structure is computable.
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1 Quiz on elementary problems

e (M1) Is the theory of (R, <,Z) w-categorical? Justify?

(M2) Give an example of a complete theory in a countable language which
has exactly 3 countable models.

(C1) True or False? Every finite extension of a decidable theory is decid-
able.

C2) True or false? Every c.e. theory is computably axiomatizable.

(
(S1) Let x be an infinite cardinal. Let A be the least cardinal for which
k* > k. Show that X is regular.

(S2) Working in ZF', show that the following statements are equivalent:
(1) Every set can be totally ordered.

(2) For every set X, (P(X), C) has maximal chain; i.e., a maximal linearly
ordered subset.
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1 Quiz 1: Do one problem each from sections A
and B

e Section A

A linear order L is called homogeneous if every finite partial order
isomorphism on L can be extended to an automorphism of L. Show that
there are homogeneous linear orders of every infinite cardinality.

Show that the class of well orderings is not axiomatizable.

Give an example of a theory in a finite language that is w;-categorical
but not w-categorical.

Can there be a theory T such that T has precisely w many pairwise
non isomorphic models?

e Section B

True or False? Justify.
(a) The closure of an isolated set of reals is countable.
(b) If X is a set of reals each of whose subsets has an isolated point, then
X is countable.

Show that there is a countable family of functions {f,, : R — {0,1}}
such that for every function f : R — {0,1} and every finite set F¥ C R
there exists an n such that f [ F = f, [ F.

Show that there is a function f : [R]*> — {0,1} such that for every
uncountable X C R, f | [X]? is not constant. Here [X]? denotes the
collection of all subsets of X of size 2.



