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A talk in two parts

§ In the first part, we will discuss the 2018 paper “Dimension 1
sequences are close to randoms,” by Greenberg, M., Shen, and
Westrick (GrMShW 2018).

§ The second part, to which the title refers, will focus on recent
work of Goh, M., Soskova, and Westrick on lowering effective
dimension (GoMSoW).
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Effective randomness

Definition. If U : 2ăω Ñ 2ăω is a universal prefix-free machine, then

Kpσq “ mint|τ | : Upτq “ σu

is the prefix-free (Kolmogorov) complexity of σ.

Theorem. X P 2ω is (Martin-Löf) random if and only if

pDcqp@nq KpX ænq ě n´ c.

Definition (Lutz; Mayordomo)
The (effective Hausdorff) dimension of a sequence X P 2ω is

dimX “ lim inf
nÑ8

KpX ænq

n
.

Note that every random has dimension 1.
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Hamming and Besicovitch distance

Definition. For each n, the Hamming distance between σ, τ P 2n is
dpσ, τq “ |σ4τ |.

This makes p2n, dq a metric space called n-dimensional Hamming
space. It is one of the primary objects of study in coding theory.

Definition. The Besicovitch (pseudo-)distance between X,Y P 2ω is

dpX,Y q “ lim sup
nÑ8

|X æn4Y æn|
n

.

In other words, it is the upper density of the symmetric difference of
X and Y .

If dpX,Y q “ 0, we say that X and Y are coarsely equivalent.
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Dimension 1 sequences

Not every dimension 1 sequence is random.

Example. Let Y P 2ω be random. Define X by

Xpnq “

#

1 if n is a power of 2,
Y pnq otherwise.

Then X is clearly not random (random sequences must be immune),
but we have only slightly lowered the initial segment complexity, so
dimX “ 1.

But every dimension 1 sequence is close to a random.

Theorem (GrMShW 2018). A sequence X P 2ω has dimension 1 if
and only if it is coarsely equivalent to a random sequence.

The proof uses a theorem of Harper about Hamming space. . . and
compactness.
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Further questions

We figured out how to efficiently raise the complexity of dimension 1
sequence to get a random. What’s next?

§ How hard is it to increase the complexity of a dimension t
sequence to get a random? In other words, what is the
(Besicovitch) distance from a dimension t sequence to the nearest
random sequence? (or equivalently, a dimension 1)?

§ What is the distance from a dimension t to the nearest dimension
s ě t sequence?

§ What about lowering dimension? What is the distance from a
dimension 1 to the nearest dimension t sequence?

§ What is the distance from a dimension s to the nearest
dimension t ď s sequence? This is Part II.
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Entropy and Hamming balls

Definition. The Shannon entropy
function is

Hppq “ ´p logppq ´ p1´ pq logp1´ pq.

Hppq is the information content of one
coin flip with probabilities p and 1´ p.

0 0.5 1
0

0.5

1

Hppq

p

Notation. If σ P 2n and r ď n, then Brpσq “ tτ P 2
n : dpσ, τq ď ru is

the Hamming ball of radius r centered at σ.

Let V pn, rq be the size of a Hamming ball of radius r in 2n. (They all
have the same size.)

Lemma. If r ď n{2, then Hpr{nqn´ opnq ď log V pn, rq ď Hpr{nqn.
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Entropy, density, and Bernoulli randomness

Lemma. If r ď n{2, then log V pn, rq « Hpr{nqn.

Prop. If σ P 2n has pn ones, then Kpσq ď Hppqn` opnq.

Proof. Note that σ P Bpnp0
nq. There are V pn, pnq strings in Bpnp0

nq,
so we can give each a description of length « log V pn, pnq « Hppqn
(for p ď 1{2). If p ą 1{2, switch the roles of 0 and 1 and use the fact
that Hp1´ pq “ Hppq to get the same bound.

Corollary. If X has asymptotic density p, then dimX ď Hppq.

Definition. For p P r0, 1s, a Bernoulli p-random is generated by
independently sampling the distribution on t0, 1u with Prp1q “ p and
Prp0q “ p1´ pq. (This can be effectivized.)

Note that Bernoulli p-randoms have density p.
Prop. If X P 2ω is a Bernoulli p-random, then dimX “ Hppq.
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The best case

Prop. If dpX,Y q “ p, then dimY ď dimX `Hppq.

Proof. Say Y æn and X æn differ on density « p. To code Y æn, it is
sufficient to code X æn and the « pn changes. Therefore,

KpY ænq À KpX ænq `Hppqn.

Corollary. If dimX “ t and dimY “ s, then

dpX,Y q ě H´1p|s´ t|q.

(Here, H´1 : r0, 1s Ñ r0, 1{2s is an increasing function.)

This bound is achievable (if we get to pick both sequences).

Prop (GrMShW 2018). If 0 ď t ď s ď 1, then there are X,Y P 2ω
such that dimX “ t, dimY “ s, and dpX,Y q “ H´1ps´ tq.
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A simple obstacle

Question. What is the distance from a dimension t sequence to the
nearest dimension s ě t sequence? Is it always H´1ps´ tq?

No, and the counterexample is simple.

§ Let X be Bernoulli H´1ptq-random.

§ So dimX “ t and the density of ones in X is H´1ptq.

§ If dimY “ s, then the density of ones in Y is at least H´1psq.

§ Therefore, dpX,Y q ě H´1psq ´H´1ptq.

It turns out that

H´1psq ´H´1ptq ą H´1ps´ tq,

except for trivialities.
0 0.25 0.5

0

0.1

t ď s “ 0.5
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Increasing dimension

The previous simple obstacle actually witnesses the worst case.

Thm (GrMShW 2018). Let 0 ď t ď s ď 1. If dimX “ t, then
there is a Y P 2ω with dimY “ s and dpX,Y q ď H´1psq ´H´1ptq.

§ There are similarities to the proof that dimension 1 sequences are
close to random sequences.

§ The analogue for finite strings follows from Harper’s theorem.
§ The construction is done blockwise, then we use compactness.

§ But there is a new difficulty: X can have regions of complexity
higher than t followed by regions of complexity lower than t.

§ There are actually two constructions, conditioned on which of
p1´ tqpH´1ptqq1 and p1´ sqpH´1psqq1 is larger.

§ Each construction is proved to work, under its respective
assumption, using a somewhat delicate convexity argument.
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Increasing dimension: s “ 0.99

0 0.2 0.4 0.6 0.8 0.99
0

0.2

0.4
worst case:
H´1

p0.99q ´H´1
ptq

best case:
H´1

p0.99 ´ tq

effective dimension (t)

di
st
an

ce

Figure: Best and worst cases for the distance from a dimension t ď 0.99
sequence to the nearest dimension 0.99 sequence. Mysteriously, this is
rotationally symmetric, and would be for any dimension s in place of 0.99.
(It is not symmetric under reflection.)
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Decreasing dimension

Lemma (Delsarte and Piret). For each r ď n, the Hamming
space 2n can be covered by « 2n{V pn, rq Hamming balls of radius r.

§ The collection of centers is called a covering code of radius r.

§ By an easy volume argument, the lemma is (essentially) optimal.

§ The lemma is proved using the probabilistic method. But we can
find such a code via exhaustive search.

§ For p ď 1{2, there is a covering code of radius pn and size
« 2n{V pn, pnq. For every center τ in that code,

Kpτq À log p2n{V pn, pnqq “ n´ log V pn, pnq « p1´Hppqqn.

Proposition. Every σ P 2n is within H´1p1´ tqn bits of a string τ
such that Kpτq À tn.

12 / 27



Decreasing dimension, cont.

Proposition. Every σ P 2n is within H´1p1´ tqn bits of a string τ
such that Kpτq À tn.

Theorem (GrMShW 2018). For any Y P 2ω and t P r0, 1s, there is
an X P 2ω such that dimX “ t and dpX,Y q ď H´1p1´ tq.

Proof. Simply apply the proposition blockwise to Y . The blocks
should grow, but not too quickly; it’s sufficient to let the nth block of
Y have size n.

Corollary (GrMShW 2018). If dimY “ 1 and t P r0, 1s, then
there is an X P 2ω such that dimX “ t and dpX,Y q “ H´1p1´ tq.

Starting from a dimension 1, the best case can always achieved!
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Every taco truck is near a corner, but. . .
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to nearest random:
1{2´H´1

ptq

distance from random
to nearest dim t:
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p1 ´ tq

effective dimension (s)
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Figure: Every random is close to a dimension t sequence, but not every
dimension t sequence is close to a random.
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Another obstacle

Question. What is the distance from a dimension s to the nearest
dimension t ď s sequence? Is it always H´1ps´ tq?

No: if information is stored redundantly, it is harder to erase. (Note
that this can’t happen in dimension 1.)

Let’s look at an example (GrMShW 2018).

§ Let Z P 2ω be random and Y “ Z ‘ Z. So dimY “ 1{2.

§ For a contradiction, fix an X P 2ω of dimension 0 such that
dpX,Y q “ H´1p1{2q.

§ We can code Y æ 2n by giving:
§ A description of X æ 2n,
§ For each i ă n such that Xp2iq ‰ Xp2i` 1q, the value Y p2iq, and
§ A description of ti ă n : Xp2iq “ Xp2i` 1q ‰ Y p2iqu.
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Another obstacle, cont.

§ We can code Y æ 2n by giving:

§ A description of X æ 2n: KpX æ 2nq.

§ For each i ă n such that Xp2iq ‰ Xp2i` 1q, the value Y p2iq:
There are À H´1

p1{2q2n such i.

§ A description of ti ă n : Xp2iq “ Xp2i` 1q ‰ Y p2iqu: This is a
subset of n of size À H´1

p1{2qn, so it has a description of length
À HpH´1

p1{2qqn “ n{2.

§ Putting this all together,

n « KpY æ 2nq À KpX æ 2nq `H´1p1{2q2n` n{2.

§ So KpX æ 2nq Á n{2´H´1p1{2q2n « 0.28n, which contradicts
the assumption that X has dimension 0.
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Decreasing dimension: the worst case

Theorem (GoMSoW). If Y P 2ω has dimension s and 0 ď t ă s,
then there is an X P 2ω with dimX “ t and

dpX,Y q ďWorstps, tq :“

$

’

&

’

%

H´1p1´ tq if t ď 1´Hp2s´1q,

t´ s

logp21´s ´ 1q
if t ą 1´Hp2s´1q.

Furthermore, for any s P p0, 1s, there is a sequence Ys of dimension s
such that these bounds are tight.

Observations.
§ If t ď s is small enough, then we can’t lower dimension from Ys

any better than if it were a random sequence!

§ In particular, for any s P p0, 1s, the distance from Ys to the
nearest dimension 0 is 1{2.
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Decreasing dimension: the worst case

Theorem (GoMSoW). If Y P 2ω has dimension s and 0 ď t ă s,
then there is an X P 2ω with dimX “ t and

dpX,Y q ďWorstps, tq :“

$

’

&

’

%

H´1p1´ tq if t ď 1´Hp2s´1q,

t´ s

logp21´s ´ 1q
if t ą 1´Hp2s´1q.

Furthermore, for any s P p0, 1s, there is a sequence Ys of dimension s
such that these bounds are tight.

Observations.
§ Even limited to few changes, we can always lower the dimension.

I.e., for all s ą 0 and ε ą 0, there is a t ă s with Worstps, tq ď ε.

§ The function is continuous, and even differentiable. Is there a
simple reason this has to be the case?

§ The second case is linear in t. Why?
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Decreasing dimension: s “ 1{2
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Figure: The distance from a dimension 1/2 sequence to the nearest
dimension t ď 1{2 sequence.
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Decreasing dimension: t “ 1{2
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Figure: The distance from a dimension s ě 1{2 sequence to the nearest
dimension 1{2 sequence.
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Covering codes revisited

How do we code information robustly? We need to better understand
covering codes. Recall:

Lemma (Delsarte and Piret). For each r ď n, there is a covering
code C Ď 2n of radius r such that |C| « 2n{V pn, rq.

§ For τ P 2n and r ď q ď n, how many centers from C should we
expect to be in the Hamming ball Bqpτq?

§ Each σ is in V pn, qq balls of radius q, so each has a probability of
V pn, qq{2n to be in a randomly chosen Hamming ball of radius q.

§ Therefore, on average, we should expect Bqpτq to contain around

|C|
V pn, qq

2n
«
V pn, qq

V pn, rq
centers from C.

§ We want a covering code that is “evenly distributed”, i.e., never
much worse that this average behavior.
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Covering codes revisited, cont.

Such codes exist.

Lemma. For r ď n, there is an covering code C Ď 2n of radius r
such that |C| « 2n{V pn, rq. Furthermore, for every q ě r and every
τ P 2n, we have

|Bqpτq X C| À
V pn, qq

V pn, rq
.

(This can be proved using the probabilistic method.)

§ Fix s and n. Let C be as in the lemma for r “ H´1p1´ sqn.

§ Note that |C| « 2n{V pn, rq « 2n{2p1´sqn “ 2sn.

§ Pick σ P C randomly. In particular, Kpσq « sn.

Claim. This σ P 2n is robust in the following sense: if we change σ
on density H´1p1´ tq to get a string τ , where t ď s, then Kpτq Á tn.
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Robust coding

Claim. If we change the σ from the previous slide on density
H´1p1´ tq to get a string τ , where t ď s, then Kpτq Á tn.

Proof. Let q “ H´1p1´ tq. We can determine σ by giving a
description of τ and the index of σ in Bqpτq X C. But

|Bqpτq X C| À V pn, qq{V pn, rq « 2p1´tqn{2p1´sqn “ 2ps´tqn.

Therefore,
sn « Kpσq À Kpτq ` ps´ tqn,

hence Kpτq Á tn.

Proposition. There is a σ P 2n such that Kpσq « sn and if
dpσ, τq ď H´1p1´ tqn, for any t ď s, then Kpτq Á tn.
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Robust coding, cont.

Proposition. There is a σ P 2n such that Kpσq « sn and if
dpσ, τq ď H´1p1´ tqn, for any t ď s, then Kpτq Á tn.

Recall. Every σ P 2n is within H´1p1´ tqn bits of a string τ such
that Kpτq À tn.

There is a σ P 2n of complexity sn such that, for t ă s, it is just
as hard to lower the complexity to tn as if σ were random.

As already stated, things are different for infinite sequences, at least
when t ă s is not too small.

This is the only case where the result for infinite sequences is not
an analogue of the result for strings.
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Decreasing dimension: the optimal strategy

Theorem (GoMSoW). If Y P 2ω has dimension s and 0 ď t ă s,
then there is an X P 2ω with dimX “ t and

dpX,Y q ďWorstps, tq :“

$

’

&

’

%

H´1p1´ tq if t ď 1´Hp2s´1q,

t´ s

logp21´s ´ 1q
if t ą 1´Hp2s´1q.

Furthermore, for any s P p0, 1s, there is a sequence Ys of dimension s
such that these bounds are tight.

Notes.
§ The optimal strategy alternates between leaving an interval

unchanged to save up changes, then making a lot of changes.

§ The ratio of the length of a “savings block” to the corresponding
“spending block” and the density of changes needed is a simple
optimization problem.
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Decreasing dimension: proving optimality

Theorem (GoMSoW). If Y P 2ω has dimension s and 0 ď t ă s,
then there is an X P 2ω with dimX “ t and

dpX,Y q ďWorstps, tq :“

$

’

&

’

%

H´1p1´ tq if t ď 1´Hp2s´1q,

t´ s

logp21´s ´ 1q
if t ą 1´Hp2s´1q.

Furthermore, for any s P p0, 1s, there is a sequence Ys of dimension s
such that these bounds are tight.

Notes.
§ To show tightness, we need to construct Ys.

§ This is done by concatenating randomly chosen “robust” strings
of dimension s and increasing lengths. (I.e., use the finite result.)

§ A convexity argument is used to prove that we can’t do better
than claimed.
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THANK YOU


