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A talk in two parts

» In the first part, we will discuss the 2018 paper “Dimension 1
sequences are close to randoms,” by Greenberg, M., Shen, and
Westrick (GrMShW 2018).

» The second part, to which the title refers, will focus on recent
work of Goh, M., Soskova, and Westrick on lowering effective
dimension (GoMSoW).
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Effective randomness
Definition. If U: 2<% — 2<% is a universal prefix-free machine, then
K(o) = min{|7]: U(7) = o}
is the prefiz-free (Kolmogorov) complezity of o.

Theorem. X €2 is (Martin-Ldf) random if and only if
(Je)(Vn) K(X tn) =n—ec.

Definition (Lutz; Mayordomo)
The (effective Hausdor(f) dimension of a sequence X € 2¢ is
dim X = lim inf M

n—0o0 n

Note that every random has dimension 1.
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Hamming and Besicovitch distance

Definition. For each n, the Hamming distance between o, T € 27 is
d(o,7) = |cAT|.

This makes (2", d) a metric space called n-dimensional Hamming
space. It is one of the primary objects of study in coding theory.

Definition. The Besicovitch (pseudo-)distance between X,Y € 2 is
X 'nAY
d(X,Y) = limsup M
n—o0 n

In other words, it is the upper density of the symmetric difference of
X and Y.

If d(X,Y) =0, we say that X and Y are coarsely equivalent.

3/27



Dimension 1 sequences

Not every dimension 1 sequence is random.
Example. Let Y € 2¥ be random. Define X by
X(n) = 1 if nis 2.1 power of 2,
Y(n) otherwise.

Then X is clearly not random (random sequences must be immune),
but we have only slightly lowered the initial segment complexity, so
dim X = 1.

But every dimension 1 sequence is close to a random.

Theorem (GrMShW 2018). A sequence X € 2 has dimension 1 if
and only if it is coarsely equivalent to a random sequence.

The proof uses a theorem of Harper about Hamming space. . . and
compactness.
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Further questions

We figured out how to efficiently raise the complexity of dimension 1
sequence to get a random. What’s next?

» How hard is it to increase the complexity of a dimension ¢
sequence to get a random? In other words, what is the
(Besicovitch) distance from a dimension ¢ sequence to the nearest
random sequence? (or equivalently, a dimension 1)?

» What is the distance from a dimension ¢ to the nearest dimension
s =t sequence?

» What about lowering dimension? What is the distance from a
dimension 1 to the nearest dimension ¢ sequence?

» What is the distance from a dimension s to the nearest
dimension t < s sequence? This is Part II.
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Entropy and Hamming balls

Definition. The Shannon entropy 1T
function is H(p)
H(p) = —plog(p) — (1 — p) log(1 — p). 05 |
H(p) is the information content of one
coin flip with probabilities p and 1 — p. 0 ; L, p
0 0.5 1
Notation. If o € 2" and r < n, then B, (o) = {T € 2": d(0,7) < r} is

the Hamming ball of radius r centered at .

Let V(n,r) be the size of a Hamming ball of radius = in 2”. (They all
have the same size.)

Lemma. If r < n/2, then H(r/n)n — o(n) <logV(n,r) < H(r/n)n

6/27



Entropy, density, and Bernoulli randomness

Lemma. If r < n/2, then logV(n,r) ~ H(r/n)n.

Prop. If o € 2" has pn ones, then K (o) < H(p)n + o(n).

Proof. Note that o € By, (0"). There are V(n,pn) strings in By, (0"),
so we can give each a description of length ~ log V(n,pn) ~ H(p)n

O

Corollary. If X has asymptotic density p, then dim X < H(p).

Definition. For p € [0, 1], a Bernoulli p-random is generated by
independently sampling the distribution on {0, 1} with Pr(1) = p and
Pr(0) = (1 — p). (This can be effectivized.)

Note that Bernoulli p-randoms have density p.
Prop. If X € 2 is a Bernoulli p-random, then dim X = H (p).

7/27



The best case

Prop. If d(X,Y) = p, then dimY < dim X + H(p).

Proof. Say Y | n and X | n differ on density ~ p. To code Y | n, it is
sufficient to code X | n and the ~ pn changes. Therefore,

K(Y In) <KX |n)+ H(p)n. O

Corollary. If dim X =t and dimY = s, then
d(X,Y) = H ' (|s — ).

(Here, H~1: [0,1] — [0,1/2] is an increasing function.)

This bound is achievable (if we get to pick both sequences).

Prop (GrMShW 2018). If 0 < ¢ < s < 1, then there are X,Y € 2¥
such that dim X = ¢, dimY = s, and d(X,Y) = H (s — t).
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A simple obstacle

Question. What is the distance from a dimension ¢ sequence to the
nearest dimension s > t sequence? Is it always H (s —t)?

No, and the counterexample is simple.

» Let X be Bernoulli H~!(¢)-random.

» So dim X = ¢ and the density of ones in X is H~1(t).

» If dim Y = s, then the density of ones in Y is at least H(s).
» Therefore, d(X,Y) > H™1(s) — H 1(t).

It turns out that
H Y(s)—H't)> H ' (s 1),

except for trivialities.

0.1

0 0.25 0.5

9/27



Increasing dimension

The previous simple obstacle actually witnesses the worst case.

Thm (GrMShW 2018). Let 0< ¢t < s < 1. If dim X =¢, then
there is a Y € 2 with dimY = s and d(X,Y) < H!(s) — H7(¢).

» There are similarities to the proof that dimension 1 sequences are
close to random sequences.

> The analogue for finite strings follows from Harper’s theorem.

> The construction is done blockwise, then we use compactness.

» But there is a new difficulty: X can have regions of complexity
higher than t followed by regions of complexity lower than t.

» There are actually two constructions, conditioned on which of
(1—t)(H~1(t)) and (1 — s)(H~!(s))’ is larger.

» Each construction is proved to work, under its respective
assumption, using a somewhat delicate convexity argument.
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Increasing dimension: s = 0.99

distance

0.4

0.2

worst case:

~10.99) — H(t)

best case:
“10.99 — )

|
0.2 0.4 0.6 0.8 0.99

effective dimension (t)

Figure: Best and worst cases for the distance from a dimension ¢ < 0.99
sequence to the nearest dimension 0.99 sequence. Mysteriously, this is

rotationally symmetric, and would be for any dimension s in place of 0.99.

(It is not symmetric under reflection.)
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Decreasing dimension

Lemma (Delsarte and Piret). For each r < n, the Hamming
space 2" can be covered by =~ 2"/V(n,r) Hamming balls of radius r.

» The collection of centers is called a covering code of radius r.
» By an easy volume argument, the lemma is (essentially) optimal.

» The lemma is proved using the probabilistic method. But we can
find such a code via exhaustive search.

» For p < 1/2, there is a covering code of radius pn and size
~ 2" /V(n,pn). For every center 7 in that code,

K(1) <log (2" /V(n,pn)) = n—logV(n,pn) ~ (1 — H(p))n.

Proposition. Every o € 2" is within H~!(1 — t)n bits of a string 7
such that K(7) < tn.
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Decreasing dimension, cont.

Proposition. Every o € 2" is within H~!(1 — ¢)n bits of a string 7
such that K(7) < tn.

Theorem (GrMShW 2018). For any Y € 2 and t € [0, 1], there is
an X € 2% such that dim X =t and d(X,Y) < H~!(1 —¢).

Proof. Simply apply the proposition blockwise to Y. The blocks
should grow, but not too quickly; it’s sufficient to let the nth block of
Y have size n. O

Corollary (GrMShW 2018). If dimY = 1 and ¢ € [0, 1], then
there is an X € 2 such that dim X =t and d(X,Y) = H (1 —t).

Starting from a dimension 1, the best case can always achieved!
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Every taco truck is near a corner, but. ..
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Figure: Every random is close to a dimension t sequence, but not every

dimension ¢ sequence is close to a random.
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Another obstacle

(Question. What is the distance from a dimension s to the nearest
dimension ¢ < s sequence? Is it always H~!(s —t)?

No: if information is stored redundantly, it is harder to erase. (Note
that this can’t happen in dimension 1.)
Let’s look at an example (GrMShW 2018).

» Let Z€2¥ berandom and Y = Z® Z. So dimY = 1/2.

» For a contradiction, fix an X € 2“ of dimension 0 such that
d(X,Y) = H(1/2).
» We can code Y | 2n by giving:

> A description of X | 2n,
> For each i < n such that X (2¢) # X (2i + 1), the value Y (2¢), and
> A description of {i < n: X(2i) = X(2i + 1) # Y (24)}.
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Another obstacle, cont.

» We can code Y | 2n by giving:
» A description of X I 2n: K(X | 2n).

» For each i < n such that X (2i) # X (2¢ + 1), the value Y (2i):
There are < H™'(1/2)2n such i.

» A description of {i <n: X(2{) = X(2i + 1) # Y (2¢)}: Thisis a
subset of n of size < H™'(1/2)n, so it has a description of length
< H(H™'Y(1/2)n = n/2.
» Putting this all together,
n~K(Y |2n) < K(X 2n)+ H (1/2)2n + n/2.

» So K(X 12n) 2 n/2— H'(1/2)2n ~ 0.28n, which contradicts
the assumption that X has dimension 0.
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Decreasing dimension: the worst case

Theorem (GoMSoW). If Y € 2¢ has dimension s and 0 < ¢ < s,
then there is an X € 2% with dim X =t and

H Y1 1) ift<1—H(257Y),
d(X,Y) < Worst(s, t) := t—s
log(21—5 — 1)

Furthermore, for any s € (0, 1], there is a sequence Yy of dimension s
such that these bounds are tight.

ift >1—H(2°71).

Observations.

» If t < s is small enough, then we can’t lower dimension from Y
any better than if it were a random sequence!

» In particular, for any s € (0, 1], the distance from Y; to the
nearest dimension 0 is 1/2.
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Decreasing dimension: the worst case

Theorem (GoMSoW). If Y € 2 has dimension s and 0 < ¢ < s,
then there is an X € 2* with dim X =t and

H Y1 —-1) ift <1—H(257h),
d(X,Y) < Worst(s, t) := t—s
log(21—¢ — 1)

Furthermore, for any s € (0, 1], there is a sequence Yy of dimension s
such that these bounds are tight.

ift >1— H(2°71).

Observations.

» Even limited to few changes, we can always lower the dimension.
Le., for all s > 0 and € > 0, there is a t < s with Worst(s,t) < e.

» The function is continuous, and even differentiable. Is there a
simple reason this has to be the case?

» The second case is linear in t. Why?
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Decreasing dimension: s = 1/2

0.5 -

case
transition

distance

distance from a
random to the
nearest dim ¢

0 0.25

effective dimension (t)

Figure: The distance from a dimension 1/2 sequence to the nearest

dimension ¢ < 1/2 sequence.
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Decreasing dimension: ¢ = 1/2
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Figure: The distance from a dimension s > 1/2 sequence to the nearest
dimension 1/2 sequence.
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Covering codes revisited

How do we code information robustly? We need to better understand
covering codes. Recall:

Lemma (Delsarte and Piret). For each r < n, there is a covering
code C < 2" of radius r such that |C| ~ 2"/V(n,r).

>

For 7 € 2™ and r < ¢ < n, how many centers from C should we
expect to be in the Hamming ball B,(7)?

Each o is in V(n, q) balls of radius ¢, so each has a probability of
V(n,q)/2™ to be in a randomly chosen Hamming ball of radius gq.

Therefore, on average, we should expect B(7) to contain around

Ving _ Ving
2n Vin,r)

centers from C.

C

We want a covering code that is “evenly distributed”, i.e., never
much worse that this average behavior.
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Covering codes revisited, cont.

Such codes exist.

Lemma. For r < n, there is an covering code C' < 2" of radius r
such that |C| ~ 2"/V(n,r). Furthermore, for every ¢ > r and every
T € 2", we have

Vi(n,q)

V(n,r)
(This can be proved using the probabilistic method.)

[By(m) n Ol 5

» Fix s and n. Let C be as in the lemma for r = H=1(1 — s)n.
> Note that |C| ~ 2"/V (n,r) ~ 27 /2(1=8)n = 257

» Pick ¢ € C randomly. In particular, K (o) ~ sn.

Claim. This o € 2" is robust in the following sense: if we change o
on density H~1(1 —t) to get a string 7, where t < s, then K(7) = tn.
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Robust coding

Claim. If we change the o from the previous slide on density
H=1(1 —1t) to get a string 7, where ¢ < s, then K(7) 2 tn.

Proof. Let ¢ = H71(1 — t). We can determine o by giving a
description of 7 and the index of ¢ in By(7) n C. But

|B,(7) n C| S V(n,q)/V(n,r) ~ 20787 2(=s)n — gls=t)n,

Therefore,
sn~ K(o) < K(1) + (s — t)n,

hence K(7) 2 tn. O

Proposition. There is a ¢ € 2" such that K (o) ~ sn and if
d(o,7) < H7Y(1 — t)n, for any t < s, then K(7) = tn.
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Robust coding, cont.

Proposition. There is a o € 2" such that K (o) ~ sn and if
d(o,7) < H7Y(1 — t)n, for any t < s, then K(7) 2 tn.

Recall. Every o € 2" is within H~*(1 — ¢)n bits of a string 7 such
that K(7) < tn.

There is a 0 € 2" of complexity sn such that, for ¢t < s, it is just
as hard to lower the complexity to tn as if o were random.

As already stated, things are different for infinite sequences, at least
when t < s is not too small.

This is the only case where the result for infinite sequences is not
an analogue of the result for strings.
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Decreasing dimension: the optimal strategy

Theorem (GoMSoW). If Y € 2 has dimension s and 0 < ¢ < s,
then there is an X € 2% with dim X =t and

H'(1—1t) ift<1-—H(257Y),
d(X,Y) < Worst(s,t) := t— s
log(21=s — 1)

Furthermore, for any s € (0, 1], there is a sequence Y; of dimension s
such that these bounds are tight.

ift>1—H(25).

Notes.

» The optimal strategy alternates between leaving an interval
unchanged to save up changes, then making a lot of changes.

» The ratio of the length of a “savings block” to the corresponding
“spending block” and the density of changes needed is a simple
optimization problem.
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Decreasing dimension: proving optimality

Theorem (GoMSoW). If Y € 2 has dimension s and 0 < ¢ < s,
then there is an X € 2% with dim X =t and

H'(1-1) ift <1—H(2°7Y),
d(X,Y) < Worst(s, t) := t—s
log(21—5 — 1)

Furthermore, for any s € (0, 1], there is a sequence Y; of dimension s
such that these bounds are tight.

ift>1—H(257).

Notes.

» To show tightness, we need to construct Y.

» This is done by concatenating randomly chosen “robust” strings
of dimension s and increasing lengths. (L.e., use the finite result.)

» A convexity argument is used to prove that we can’t do better
than claimed.
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