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TL;DR

Martin’s conjecture: classifies all the “natural”
functions on the Turing degrees.

Our result: if a “natural” function on the Turing
degrees satisfies an additional condition (being
order-preserving) then it is either eventually
constant or eventually increasing.



Where are the natural intermediate degrees?

It is easy to construct Turing degrees in-between 0
and 0′. So why are all the undecidable problems
that come up in mathematics at least as hard as the
halting problem?

Martin’s conjecture provides a partial explanation of
this phenomenon.

The idea is that natural problems can be used to
define operators on the Turing degrees.



Propaganda for Martin’s conjecture

A “natural” undecidable problem A should be

• Relativizable: for each oracle X ⊆ N, we have
a version of the problem A relative to X , i.e. A
defines an operator X 7→ A(X )

• Degree invariant: equivalent oracles give
equivalent versions of the problem, i.e. if
X ≡T Y then A(X ) ≡T A(Y )

The point: A induces a function on the Turing
degrees.



Martin’s conjecture: super informal version

Very loosely, Martin’s conjecture says that the only
“natural” functions on the Turing degrees are the
iterates of the Turing jump.

Of course, it looks like we’ve now attempted to
explain a vague statement about natural Turing
degrees by making a vague conjecture about natural
functions on the Turing degrees.

The value of Martin’s conjecture is the way it makes
this precise, which I’ll explain next.



What are the natural functions on the Turing
degrees?

Constantly zero: x 7→ 0

Identity: x 7→ x

Jump: x 7→ x ′

Double jump: x 7→ x ′′

. . .

Hyperjump: x 7→ Ox

. . .



What are the natural functions on the Turing
degrees?

Intuitively: just the transfinite iterates of the jump.
But it is easy to construct others.

Example 1: For every x there is y such that

x <T y <T x ′.

Use choice to pick one such y for each x .



What are the natural functions on the Turing
degrees?

Intuitively: just the transfinite iterates of the jump.
But it is easy to construct others.

Example 2: Fix a Turing degree z and define

f (x) =

{
0 if x �T z

x ′ if x ≥T z .



What are the natural functions on the Turing
degrees?

Idea of Martin’s conjecture: Exclude these types
of examples

• Remove the axiom of choice

• Only look at the behavior of functions “in the
limit”



What does “in the limit” mean?

Definition: For f , g functions on the Turing degrees

• f ≡ g if there is some z such that

x ≥T z =⇒ f (x) = g(x)

“f = g on the cone above z”

• f ≤ g if there is some z such that

x ≥T z =⇒ f (x) ≤T g(x)

“f ≤ g on the cone above z”



What does “in the limit” mean?

More generally: For A a set of Turing degrees

• A has measure 1 if there is some z such that

x ≥T z =⇒ x ∈ A

“A contains a cone”

• A has measure 0 if there is some z such that

x ≥T z =⇒ x /∈ A

“A is disjoint from a cone”

Fact: This forms a {0, 1}-valued measure on the
Turing degrees, called Martin measure



Removing the axiom of choice

Statement of Martin’s conjecture removes choice
but adds the axiom of determinacy (AD)

Why?

• Philosophical reason: If you can’t construct a
function in ZF + AD then you also can’t
construct it in ZF

• Practical reason: AD allows you to prove
structural theorems, gives some hope of
classifying all functions on the Turing degrees

• Philosophical reason 2: Assuming large
cardinal hypotheses, AD typically holds for
“definable sets” (e.g. sets in L(R))



Removing the axiom of choice

Statement of Martin’s conjecture removes choice
but adds the axiom of determinacy (AD)

Assuming the axiom of determinacy:

Fact: The Martin measure is an ultrafilter.

Fact, restated: Every set of Turing degrees either
contains a cone or is disjoint from a cone

Fact, restated again: If for every x there is y ≥T x
such that y ∈ A then A contains a cone (“if A is
cofinal then A contains a cone”)



Philosophy of using determinacy in computability

Principle 1: Describe what you want, show it is
cofinal, and let determinacy do the rest.

Example (jump inversion via nuclear flyswatter):
There is some z such that for each x ≥T z there is
y with y ′ ≡T x .

Proof: Let A = {x | ∃y (y ′ = x)}. This set is
cofinal since for each x , x ′ ≥T x and has this
property. So A contains a cone.

This example is kind of absurd because we already
know that this property holds on the cone above 0′



Philosophy of using determinacy in computability

Principle 2: If the union of countably many sets is
cofinal then so is at least one of the sets.

Example: If f is below a constant function then it is
constant on a cone (i.e. equivalent to a constant
function).

Proof: Assume that for all x , f (x) ≤T c . There are
countably many degrees below c and the union of
the their preimages is the entire Turing degrees. So
for some y , f −1({y}) is cofinal and so by
determinacy it contains a cone.



Martin’s Conjecture

Statement of Martin’s conjecture: Assuming
the axiom of determinacy

(1) Every function on the Turing degrees is either
equivalent to a constant function or greater
than or equal to the identity function

(2) The (equivalence classes of) functions which
are increasing form a well-order where the
successor is given by the jump (i.e. successor
of f is x 7→ f (x)′)

Disclaimer: Martin’s conjecture is usually stated in terms of
Turing-invariant functions on 2ω. Assuming ADR or AD+ (two
strengthenings of the axiom of determinacy), this is equivalent.



Some Past Results

Theorem (Slaman and Steel 1980’s): Part 1 of
Martin’s conjecture holds for functions below the
identity.

Restated: If f (x) ≤T x for all x then f is either
constant on a cone or equal to the identity on a
cone



Some Past Results

Definition: If f is a function on the Turing degrees,
f is order-preserving if for all x and y

x ≤T y =⇒ f (x) ≤T f (y)

Theorem (Slaman and Steel 1980’s): Part 2 of
Martin’s conjecture holds for order-preserving
functions which are below the hyperjump.

Restated: Equivalence classes of order-preserving
functions which are above the identity and below
the hyperjump form a well-order with successor
given by the jump.



Our Main Results

Theorem (L. and Siskind): Part 1 of Martin’s
conjecture holds for order-preserving functions.

Restated: An order-preserving function on the
Turing degrees is either constant on a cone or
increasing on a cone.

Rules out “sideways” order-preserving functions (i.e.
functions f for which f (x) is incomparable to x)



Our Main Results

A function f on the Turing degrees is measure-
preserving if for all x there is some y such that

z ≥T y =⇒ f (z) ≥T x

i.e. f is greater than every constant function.
or “f goes to infinity in the limit”

Theorem (L. and Siskind): Part 1 of Martin’s
conjecture holds for measure-preserving functions.

Restated: A function which is above every constant
function is also above the identity.
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High Level Overview

(1) Identify a combinatorial condition (being
measure-preserving) that is enough to prove part
1 of Martin’s conjecture

(2) Show that every order-preserving function is
either constant on a cone or measure-preserving
using a new basis theorem for perfect sets (I will
skip this)

(3) Show that every measure-preserving function is
above the identity (I will focus on this)



High Level Overview

How does the proof for measure-preserving
functions work?

(1) General framework is a basic topological fact
about continuous, injective functions

(2) To apply this in our case, study the structure of
measure-preserving functions under determinacy

(3) In more detail: use determinacy to get certain
auxiliary functions associated to a measure
preserving function (basically a Skolem function
witnessing that it is measure-preserving, and the
inverse of this Skolem function)



A basic fact of topology

A basic theorem in topology: If F : X → X is a
continuous, injective function on a compact,
Hausdorff topological space X then F has
continuous inverse range(F )→ X .

Computability theory version: If F : 2ω → 2ω is a
computable injective function then for all x , F (x)
can compute x .

Key idea: To show a function f is above the
identity, it is enough to find a computable, injective
function which is below f .



Some technicalities

Key idea: To show a function f is above the
identity, it is enough to find a computable, injective
function which is below f .

Actually, we need to use a more refined version of
this basic strategy.

Computability theory version, refined: If T is a
pointed perfect tree and F : [T ]→ 2ω is a comput-
able injective function then for all x in [T ],
F (x)⊕ T can compute x .



What is a pointed perfect tree?

Definition: A pointed perfect tree is a perfect binary
tree T such that all infinite paths through T
compute T

Notation: [T ] = set of infinite paths through T

If T is a pointed perfect tree then every Turing
degree above T has a representative in [T ]

Theorem (AD): If A ⊆ 2ω is such that for all x there
is y ∈ A with y ≥T x (i.e. A is cofinal) then there is
a pointed perfect tree T such that [T ] ⊆ A

The point: We can use determinacy for subsets of
2ω in addition to sets of Turing degrees



Proof strategy in more detail

• Start with a measure-preserving function f

• Find a pointed perfect tree T and a computable
injective function g on [T ] which is below f .

• So for every x ∈ [T ], g(x)⊕ T can compute x

• Since f is measure-preserving, f (x) can
eventually compute T

• So f (x) can eventually compute g(x)⊕ T and
hence also x

To see how to find T and g , we need to understand
better what we can do with measure-preserving
functions under determinacy.



What are measure-preserving functions again?

Definition: A function f on the Turing degrees is
measure-preserving if for all x there is some y such
that

z ≥T y =⇒ f (z) ≥T x

“f goes to infinity in the limit”

This definition naturally suggests looking at the
Skolem function which witnesses that f is
measure-preserving.



More about measure-preserving functions

Definition: If f is a measure-preserving function, call
g : 2ω → 2ω a modulus for f if for all x ,

z ≥T g(x) =⇒ f (z) ≥T x .

Call g an increasing modulus for f if in addition we
have g(x) ≥T x .

It may seem obvious that every measure-preserving
functions has a modulus. But you are probably
using the axiom of choice.

However, it is also true under determinacy! (By a
uniformization theorem)
Disclaimer: needs ADR or AD+



How to use the modulus

Remember: We are trying to find a computable
injective function which f computes. Here’s how we
find it.

Fix an increasing modulus g for f . We get the
function we want by using determinacy to invert g
(like in the jump inversion via nuclear flyswatter
example)



How to use the modulus

Fix an increasing modulus g for f . We get the
function we want by using determinacy to invert g

Explanation: suppose h : range(g)→ 2ω is an
inverse for g—i.e. g(h(x)) = x .

• h is injective: if h(x) = h(y) then

x = g(h(x)) = g(h(y)) = y

• h is computable: h(x) ≤T g(h(x)) = x because
g is increasing

• f is above h: x ≥T g(h(x)) so f (x) ≥T h(x)



How to use the modulus

Fix an increasing modulus g for f . We get the
function we want by using determinacy to invert g
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How to use the modulus

Fix an increasing modulus g for f . We get the
function we want by using determinacy to invert g
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How is this possible??

This function h seems like exactly the kind of thing
that’s supposed to be ruled out by Martin’s
conjecture! It’s decreasing and injective (so it’s not
constant on any cone). Why is this possible?

Answer: h is a function on 2ω and there is no
guarantee it is Turing invariant (i.e. even if x ≡T y
we may have h(x) 6≡T h(y)) so it does not induce a
function on Turing degrees.

This is a key point in our proof: you can study a
Turing invariant function by relating it to a non-
Turing invariant function you get with determinacy



How to use determinacy to invert the modulus

Suppose g is an increasing modulus for f . Since g
is increasing, the set A = {x | ∃y (g(y) = x)} is
cofinal (just like jump inversion example). Define

Ae = {x | Φe(x) is total ∧ g(Φe(x)) = x}

Since g is increasing, any y such that g(y) = x
must be computable from x . So we have

A =
⋃
e∈N

Ae .

Hence one of the Ae ’s is cofinal and so contains a
pointed perfect tree. Set h = Φe for this e



An alternative proof

The proof we just saw uses more determinacy than
just AD. Let’s see why.

The basic strategy was to find a computable
injective function g which is below f . The g we
used was injective because it was the inverse of
another function. But to find that other function,
we had to use more determinacy than just AD.

Question: Is there another way to find an injective
function g?

Answer: Yes! (but only for order-preserving
functions)



An alternative proof

The basic strategy is the same as before: find a
computable injective function g which is below f .

Previously, the g we found was injective because it
was the inverse of another function. What can we
do instead?

Fact (Spector-style perfect tree dichotomy): If T is
a pointed perfect tree and g is a computable
function on [T ] then either g is injective on a
pointed perfect subtree of T or g is constant on a
pointed perfect subtree of T .

Upshot: Just need to find g which is not eventually
constant.



An alternative proof

The basic strategy is the same as before: find a
computable injective function g which is below f .

It’s enough to find g which is not eventually
constant.

We will ensure that by picking g which preserves an
ordinal invariant



Ordinal invariants

Definition: An ordinal invariant is a function from
the Turing degrees to the ordinals

Prototypical example: x 7→ ωx
1 , where ωx

1 is the
least ordinal with no presentation computable by x



Ordinal invariants

Fact: If α is an ordinal invariant, then α is order
preserving on a cone—i.e. there is some z such that
for all x , y ≥T z

x ≤T y =⇒ α(x) ≤T α(y)

Theorem: If f is a measure preserving function and
α is an ordinal invariant then f preserves α on a
cone—i.e. there is some z such that

x ≥T z =⇒ α(x) ≤T α(f (x)).



Ordinal invariants

Theorem (abbreviated): α(x) ≤ f (α(x)) on a cone

Proof: Suppose not. Then by determinacy,
α(f (x)) < α(x) on the cone above some z .

Key point: If f is measure-preserving then so are

f ◦ f , f ◦ f ◦ f , . . .

So we can find x large enough that x , f (x),
f (f (x)), . . . are all above z . We have

α(x) > α(f (x)) > α(f (f (x))) > . . .

which is a descending sequence in the ordinals!



Brief sketch of alternative proof

• Define some ordinal invariant α

• Use determinacy to get a pointed perfect tree T
and a computable function g on [T ] which is
below f and such that g(α(x)) ≥ α(x).

• g can’t be constant on any pointed perfect tree
because you can always make α(x) increase by
increasing x

Fact that measure-preserving functions preserve
ordinal invariants is used in finding g .



A suggestive fact

Definition (ergodic theory): If (X ,A, µ) is a
measure space and F : X → Y is a function then
the pushforward of µ by F , written F∗(µ) is the
measure on Y given by F∗(µ)(A) = µ(F−1(A)).

Definition (ergodic theory): If (X ,A, µ) is a
measure space and F : X → X is a measurable
function then F is called measure-preserving if
F∗(µ) = µ.

Fact: A function f on the Turing degrees is
measure-preserving in our sense if and only if

f∗(Martin measure) = Martin measure



A suggestive fact

Fact: A function f on the Turing degrees is
measure-preserving in our sense if and only if

f∗(Martin measure) = Martin measure

An unexpected conseuqence: Our proof for
measure-preserving functions implies that part 1 of
Martin’s conjecture is equivalent to the statement
“the Martin measure is minimal in the Rudin-Keisler
order on ultrafilters on the Turing degrees”



The view from the ultrapower

Since the Martin measure is an ultrafilter, we can
use it to take ultrapowers of structures.

• Since the Martin measure is countably complete,
the ultrapower of the ordinals is well-founded.

• An ordinal invariant is a (representative of an)
element of this ultrapower

• A measure-preserving function induces an
embedding on the ultrapower

• Embeddings on well-ordered sets are always
non-decreasing

This gives an alternative proof of the theorem about
ordinal invariants!



A new direction?

Ultrapowers by the Martin measure have been
studied in the context of the descriptive set theory
of L(R)

In that context, there is also the concept of a
“generic ultrapower” using a notion of forcing
whose conditions are pointed perfect trees.

Does all of this mean that we can understand the
structure of functions on the Turing degrees by
applying tools from descriptive set theory? Do
things become clearer if we work in the ultrapower
by the Martin measure?



Afterword: New basis theorem for perfect sets

Theorem (L.): If A is a perfect subset of 2ω, B is a
countable dense subset of A and x computes every
element of B then for every y there are
z0, z1, z2, z3 ∈ A such that

x ⊕ z0 ⊕ z1 ⊕ z2 ⊕ z3 ≥T y

Proof is pretty much pure computability theory.


