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Generic Muchnik Reducibility

Definition
A structureM is Muchnik reducible to N (writtenM≤w N ) if
every copy of N computes a copy ofM. (Note: We assume no
uniformity.)

Definition (Schweber)

For (possibly uncountable structures)M and N , we say thatM
is generic muchnik reducible to N (M≤∗w N ) if for every
(equivalently some) generic extension V [G] of the set-theoretic
universe V which makesM and N countable, we have
M≤w N .

The fact that some or every can be used to describe the generic
extension comes from Shoenfeld absoluteness.
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Some familiar structures

C is the structure with universe 2ω and language Ui so that
Ui(σ) if and only if σ(i) = 1.
Similarly, B is the structure with universe ωω and language Vi,j
so that Vi,j(σ) if and only if σ(i) = j.

Note that for any countable structureM,M <∗w C.
To see this, fix any σ ∈ C which computes a copy ofM.
ThenM≤∗w {σ} <∗w {σ′} <∗w C
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Some familiar structures

Theorem (Knight-Montalban-Schweber, Igusa-Knight,
Downey-Greenberg-Miller, Igusa-Knight-Schweber,
A.-Knight-Kuyper-Miller-Soskova)

(C,⊕,′ ) ≡ BC

<
∗ w

(C,⊕) ≡∗w B ≡∗w (R,+, ·) ≡∗w (R,+, <) ≡∗w (R,+, ·, {fi}i∈ω)

<
∗ w

C

where the sequence {fi}i∈ω is any countable sequence of
continuous functions on a power of R.

BC is the “Borel complete” structure studied in
A.-Knight-Kuyper-Miller-Soskova. For our purposes, we can
define it to be (C,⊕,′ )
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C and B are ∆0
2-relatively-generically-categorical

Definition
A structureM is said to be ∆0

2-relatively-generically-categorical
if whenever A and B are two copies ofM in V [G], where V [G]
makesM countable, then there is a ∆0

2(A⊕B)-isomorphism in
V [G] between them.

The fact that C and B are ∆0
2-relatively-generically-categorical

will mean that they are a good canvas for other structures to
paint their definable sets.

Theorem

Both C and B are ∆0
2-relatively-generically-categorical.

Proof.
It is computable in A⊕B to see that an element a ∈ A has the
same nth value as an element b ∈ B. Thus to check whether a
has all the same values as b is ∆0

2(A⊕B). This gives the
isomorphism. 5 / 22



Starting towards definability

Definition

LetM be a countable structure. A set X ⊆Mk is relatively
intrinsically Σ0

n inM, written Σ∗n(M), if for every presentation
A ofM, X is Σ0

n relative to the atomic diagram of A.

Theorem (Applied Ash–Knight–Manasse–Slaman–Chisholm)

Let V [G] be a generic extension and X ∈ V [G] be a set that is
Σ∗n(M) in the sense of V [G]. Then there is a Σc

n formula in the
sense of V that defines X in V . In particular, X ∈ V .

Proof.
The classic Ash–Knight–Manasse–Slaman–Chisholm theorem
shows that there is a Σc

n formula ϕ(x,~a) in V [G] that defines X
(with finitely many parameters fromM) in V [G]. But
computability is absolute, so ϕ is Σc

n and in V . Similarly,
satisfaction of ϕ onM is absolute, so the fact that X is defined
by ϕ is absolute. 6 / 22



Complexity Profiles

Definition
LetM be a structure with a copy of A in it (i.e. quantifier-free
defined inM). Then we say a set X ⊆ A is in AΣMi if X (as a
subset of A) is relatively intrinsically Σi inM.

Notation overlap: Note that Σ∗n(A) = AΣAn .

Theorem
If A is ∆0

2-relatively-generically-categorical, then which copy of
A is used in the definition of AΣMi for i ≥ 2 doesn’t matter.
This lets us define the collection AΣMi for anyM≥∗w A.
Formally, for anyM≥∗w A, we replaceM byMtA and look
at that particular chosen copy of A.
Further, ifM≤∗w N , then AΣMi ⊆ AΣNi .

The A-Complexity profile ofM is the sequence (AΣMi )i≥2.
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Some topology notation

Definition
For a Polish space X (we’ll apply this to C and B):

The Borel sets of X are the sets in the σ-algebra generated
by the open sets of X.
Σ0

1 is the collection of open subsets of X.
Π0

k is the collection of complements of Σ0
k sets.

Σ0
k+1 is the collection of countable unions of Π0

k sets.
∆0

k is Σ0
k ∩Π0

k.
A set A ⊆ X is Σ1

1 if for some Polish Y and Borel
B ⊆ X × Y , A is the projection of B on X.
Π1

k is the collection of complements of Σ1
k sets.

A set A ⊆ X is Σ1
k+1 if for some Polish Y and Π1

k set
B ⊆ X × Y , A is the projection of B on X.
∆1

k is Σ1
k ∩Π1

k.
A set is projective if it is in

⋃
k∈ω Σ1

k.
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The complexity profiles

Theorem
1 The C-complexity profile of C is given by CΣC2 = Σ0

2, and
CΣCi = Σ1

i−2 for i ≥ 3.
2 The B-complexity profile of B is given by BΣBi = Σ1

i−1.
3 The C-complexity profile of B is given by CΣBi = Σ1

i−1.
4 The B-complexity profile of BC is given by BΣBCi = Σ1

i .
5 The C-complexity profile of BC is given by CΣBCi = Σ1

i .

Proof.
Ash–Knight–Menasse–Slaman–Chisholm + some care.

Corollary (Already known, but this gives a clear reason in terms
of definability)
C <∗w B <∗w BC
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Expansions of C or B by unary predicates

Theorem

Let A be either C or B. Let (Si)i∈ω be a countable sequence of
unary relations. Let F : A → A be given by F (x) = y where
y(n) = 1 if x ∈ Sn and y(n) = 0 if x /∈ Sn (so F actually has
range in C ⊆ A). Then (A, (Si)i∈ω) ≡∗w A if and only if the
graph of F is in ∆∗2(A).

Proof.

Suppose that (A, (Si)i∈ω) ≡∗w A. Then A∆A2 = A∆
(A,(Si)i∈ω)
2 ,

and F is in the latter.
Supposing F ∈ A∆A2 , we do a finite injury argument giving
ourselves a single element from A which tells us, for each σ and
boolean combination of the Si whether there is some τ ∈ A
extending σ in the boolean combination, and if so, it specifies
one.
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Expansions of C or B by closed relations

Definition
A formula is positive existential, also written ∃+, if it is in the
closure of atomic formulas by the operations ∧,∨,∃v.
Let A ∈ {C,B} and letM be an expansion of A. We define
SMAk(M) ⊆ Ak+1 to be the relation defined by: SMAk(x̄, y)
holds if |x̄| = k and the positive existential type of x̄ inM
equals y. That is, y defines the characteristic function of the
positive existential type of x̄, identifying formulas with numbers
via their Gödel codes.
We define SMA(M) to be a unary relation on A given by
SMA(z) holds if z = n _ (x1 ⊕ · · · ⊕ xn ⊕ y) and SMAn(x̄, y).

Lemma

LetM be an expansion of C or B by countably many closed
relations. Then SMA(M) ∈ ∆∗2(M).

11 / 22



Expansions of C or B by closed relations

Theorem
Let A be C or B and let H ≥∗w A. LetM be an expansion of A
by countably many closed relations. ThenM≤∗w H if and only
if SMA(M) ∈ A∆H2 .

Proof.

IfM≤∗w H, then SMA(M) ∈ A∆M2 ⊆ A∆H2 . The other
direction is a subtle “pull-down” argument where SMA is exactly
what we need to have guessed in order to guide our recovery
from injury.

Once again, keeping the same generic muchnik degree is the
same as keeping the same complexity profile. The collection of
definable sets seems to be a fine enough notion.
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Expansions of C that must be above B

Observation
(C, P ) where P is a predicate for the “rationals” (i.e. the
elements of C which have only finitely many 1s) is generic
Muchnik equivalent to B.

Proof.
For each x /∈ P , let π(x) ∈ B be the element describing the
distances between consecutive 1s in x. Then π is a computable
bijection between C \ P and B.

A fancier version of this same idea is:

Theorem

SupposeM≥∗w C and A ⊆ C∆M2 is countable, P ⊆ C is perfect,
and A ∩ P is dense in P . ThenM≥∗w B.
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∆∗2-sets which are not ∆0
2 get us up to B

Lemma (Hurewicz)

If R ⊆ C is Borel but not ∆0
2, then there is a perfect set P ⊆ C

such that either P ∩R or P \R is countable and dense in P .

Corollary

IfM≤∗w B is an expansion of C and ∆∗2(M) 6= ∆∗2(C), then
M≡∗w B.

Proof.

Let X ∈ ∆∗2(M) \∆∗2(C). SinceM≤∗w B, X is in C∆B2 . Then,
X is Borel, but not ∆0

2. Hurewicz and the previous Theorem
give thatM≥∗w B.
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Dichotomy theorems for expansions of C

Theorem
Let (Ui)i∈ω be a countable sequence of unary relations on C.
ThenM = (C, (Ui)i∈ω) cannot have generic Muchnik degree
strictly between C and B.

Proof.

SupposeM≤∗w B. Then since each Ui ∈ C∆M2 , we either have
M≥∗w B or they are all in ∆∗2(C), i.e., they are all ∆0

2.
But then the F which codes up the unary predicates is Borel
and in C∆M2 . So either F is ∆0

2, in which caseM≤∗w C or it is
not, in which case,M≥∗w B.
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Dichotomy theorems for expansions of C Part II

Theorem
Suppose thatM is an expansion of C by countably many closed
relations. Then eitherM≡∗w C orM≥∗w B.

Proof.
Either SMA(M) is ∆0

2, in which caseM≤∗w C or it is not, in
which caseM≥∗w B, because SMA(M) ∈ ∆∗2(M) and is
Borel.
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Expansions of B that must be above BC

Lemma

LetM be an expansion of B. Suppose that there is a set
Y ∈ ∆∗2(M) that is Σ1

1-hard under continuous reduction. Then
M≥∗w BC.

We will assume enough Wadge determinacy so that for any set
in ∆∗2(M), either X is Borel or X (or its complement) is
Σ1

1-hard under continuous reduction. For example:

Theorem (Projective Wadge-determinacy)

LetM = (B, X) where X is projective. Suppose
∆∗2(M) 6= ∆∗2(B). ThenM≥∗w BC.

Proof.
Let Y be in ∆∗2(M) r ∆∗2(B). Then Y is projective but not
Borel. So either Y or its complement is Σ1

1-hard under
continuous reduction, soM≥∗w BC.
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Dichotomy theorems for expansions of B

Theorem (∆1
2-Wadge determinacy)

Let (Ui)i∈ω be a countable sequence of unary relations on B.
ThenM = (B, (Ui)i∈ω) cannot have generic Muchnik degree
strictly between B and BC.

Proof.

Suppose thatM≤∗w BC, then each Ui is ∆1
2 (=B∆BC2 ). If any

are not Borel, then ∆1
2-Wadge determinacy says that it or its

complement is Σ1
1-hard under continuous reduction. Then

M≥∗w BC. So we can suppose they are all Borel. Then the
function F which gathers them up is ∆1

2.
Either F is Borel(=∆∗2(B)), in which caseM≤∗w B or it is not,
in which case,M≥∗w BC.
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Dichotomy theorems for expansions of B Part II

Theorem (∆1
2-Wadge determinacy)

Suppose thatM is an expansion of B by countably many closed
relations. Then eitherM≡∗w B orM≥∗w BC.

Proof.
Either SMA(M) is ∆∗2(B) (i.e. Borel), in which caseM≤∗w B or
it is not, in which case, SMA(M) ∈ ∆∗2(M) ⊆∆1

2, soM≥∗w BC
by the same Wadge determinacy + Σ1

1-hardness argument.
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Building intermediate degrees

How can we build some degree between C and B?
The idea is to build some structure C ≤∗w M≤∗w B so that
C∆M2 = C∆C2 , but C∆Mk ) C∆Ck for some k. The former ensures
thatM 6≥∗w B, and the latter ensures that C 6≥∗w M.
The strategy uses the following theorem:

Theorem (Knight)

If a linear order has a jump degree, then it must be 0′.

We extend this to:

Theorem

LetM≥∗w C and L be a linear order. Then C∆M2 = C∆MtL2 .

So a structure of the form C t L necessarily satisfies the first
condition C∆M2 = C∆C2 . With some coding, we can use this idea
to build degrees strictly between C and B, and also strictly
between B and BC.
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Conclusions

The complexity profiles capture which sets are definable at
various levels of the Lcω1,ω-hierarchy. For “natural” structures,
these correspond to topologically meaningful classes.
Complexity profiles are subtle enough to sense (at least in these
examples) when structures have the same or different generic
Muchnik degree, and even to provide dichotomy theorems.
They are also sensitive enough to use to build intermediate
degrees.
Overall, complexity profiles are a great tool in understanding
generic Muchnik degrees. And despite my innate set-theory
aversion, I think that the generic Muchnik degrees are the (or at
least ‘a’) correct way to extend the ideas of computability into
the uncountable setting.
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The end

Thank you!
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