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Motivation

Understand the relation between the fickleness of a recursively
enumerable (r.e.) Turing degree d ∈ RT and its ability to bound
a given finite lattice (L,∨,∧).
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Bounding Distributive Lattices in RT

Lattices can be distributive or non-distributive. Distributive
lattices are those that do not contain a copy of N5 or 1-3-1 as
sublattices (Birkhoff).

N5 1-3-1

Theorem (Lerman; Lachlan 1972; Thomason 1971)
Distributive lattices can be bounded below any d ∈ RT − {0}.
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Bounding Non-Distributive Lattices in RT

S8

L20

L7

Fig: Some non-distributive lattices. They must
contain N5 or 1-3-1.
Let d ∈ RT − {0}.
Theorem (Lachlan and Soare 1980; Lempp
and Lerman 1997; Downey, Greenberg, and
Weber 2007; Ambos-Spies and Losert 2019;
Downey and Greenberg 2015)
d bounds N5 (Folklore).
d cannot bound S8 or L20 (LS80;LL97).
d bounds L7 iff its “fickleness > ω” (DGW07;AL19).
d bounds 1-3-1 iff its “fickleness ≥ ωω” (DG15).
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Fickleness of d ∈ RT

Let d ∈ RT, α ≤ ε0 := sup
{
ω, ωω, ωω

ω
, · · ·

}
.

Definition (Downey and Greenberg 2015)
A set is α-computably approximable (α-c.a.) if it “changes its
mind ≤ α-times”. E.g. n-r.e. sets are n-c.a..
d is totally α-c.a. (d ∈ T(α), or d’s fickleness ≤ α) if every
A ∈ d is α-c.a..
d is properly T(α) (d ∈ pT(α), or d’s fickleness = α) if d ∈ T(α)
and d 6∈ T(β) ∀β < α.
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Fickleness Hierarchy

Theorem (Downey and
Greenberg 2015)
For every α ≤ ε0 there exists
d ∈ pT(ωα).
If d ∈ T(β) and ωα ≤ β is the
largest power of ω below β,
then d ∈ T(ωα).
Every d ∈ T(ωα) is low2.

Lemma
For every α ≤ ε0 there exists
low and nonlow d ∈ pT(ωα).

ω

ω2

ω3

...

ωω

ωω+1

...

low2

low

no
nl

ow

Figure: Fickleness hierarchy is low2,
independent from nonlowness, and
collapses to powers of ω.
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Towards Characterizing > ω2-Fickleness
Open Question (Downey and Greenberg 2015)
We saw that L7 (1-3-1) characterized > ω (≥ ωω) -fickleness.
Is there a lattice that characterizes > ω2-fickleness?

L7
> ω-fickleness

?

> ω2-fickleness
1-3-1

≥ ωω-fickleness
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3 Independent Elements Lattices
Do Not Characterize > ω2-Fickleness

≥ ωω

> ω

> 0

Consider lattices L like L7 and
1-3-1 with no more than 3
independent elements A,B,C,
and every element in L is
either the join or meet of
elements in {A,B,C}.

Theorem
Each such lattice either
characterizes > 0, > ω, or
≥ ωω-fickleness.
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One Meet Demands > ω-Fickleness

A CB

(Downey, Greenberg, and Weber 2007;
Ambos-Spies and Losert 2019)
Construct r.e. A,B,C, ∆A,∆C satisfying

JA : A = ∆A(B,C),

JC : C = ∆C(A,B),

DΨ : A 6= Ψ(B),

MΦ : Φ0(A) = Φ1(C) = W =⇒ W ≤ 0.
JA-strategy: To put x into A, first put δA(x) into B or C.
JC-strategy: To put x into C, first put δC(x) into A or B.

9 / 23



Dist., Non-Dist Lattices Fickleness Fickleness and No. Equal Meets Demanding≥ ωω -Fickleness Infinite Semilattice

One Meet Demands > ω-Fickleness

D-strategy: Pick x and wait for x to be
realized (Ψ(x) = 0). Restrain B � ψ(x).
Want to put x into A, but JA requires δA(x)
be put into B or C first. Restraint on B
forces us to target C. JC requires
δC(δA(x)) be put into A or B first.
Restraint on B forces us to target A.
Repeat till we can target B when

δC(δA(. . . δC(δA(︸ ︷︷ ︸
n alternations

x)) . . .) > ψ(x).

We get an ac-trace x , δA(x), δCδA(x), . . .
of length n < ω that needs to be
enumerated into A and C in reverse
before x finally enters A.

DΨ:A6=Ψ(B)

A B C

ψ(x)

x

δA(x)

δCδA(x)

δAδCδA(x)

δCδAδCδA(x)
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One Meet Demands > ω-Fickleness

MΦ : Φ0(A) = Φ1(C) = W =⇒ W ≤ 0.

M-strategy: Wait for equality Φ0(y) = Φ1(y). Always restrain
A � φ0(y) or C � φ1(y) to prevent injuring computations on A
and C sides simultaneously.
D versus M: D needs to enumerate an ac-trace of length
n < ω. M disallows the entire trace from being enumerated
simultaneously, so D needs n permissions to be satisfied.
Construction can be viewed as a pinball machine, where an
ac-trace is represented by ac-balls, and where M is
represented as an AC-gate that opens and closes infinitely
often, allowing only one ball to pass through each time.

M : A ∧ C = 0 acacac
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Two Equal Meets Demand ≥ ωω-Fickleness

A BC

(Downey and Greenberg 2015)
Construct r.e. A,B,C, ∆A,∆C satisfying

JA : A = ∆A(B,C),

JC : C = ∆C(A,B),

DΨ : A 6= Ψ(B),

MACΦ : Φ0(A) = Φ1(C) = W =⇒ W ≤ 0,
MABΦ : Φ0(A) = Φ1(B) = W =⇒ W ≤ 0.
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Two Equal Meets Demand ≥ ωω-Fickleness
The new MAB requirement introduces AB-gates for ac-traces to
pass through.

acacacA ∧ C = 0
A ∧ B = 0
A ∧ C = 0
A ∧ B = 0

To pass 2 (k ) alternations of AC and AB-gates, the trace
demands ≥ ω2 (≥ ωk ) permissions. Therefore with just one
more meet requirement, fickleness demanded increases from
> ω to ≥ ωω.
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Alternative Conditions that Demand ≥ ωω-Fickleness

Open Question
Besides having two equal meets and relevant
join requirements, are there other sets of
conditions a lattice could satisfy to demand
≥ ωω-fickleness?
In particular, can we find a 4 independent
element lattice L at the ≥ ωω level that does not
already contain a copy of any of these ≥ ωω
latices?

≥ ωω
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Alternative Conditions that Demand ≥ ωω-Fickleness

Consider a lattice L with 4
independent elements
A,B,C,D, satisfying

A ≤ B + C + D, A ∧ B = 0,
B ≤ A + C + D, A ∧ C = 0,
C ≤ A + B + D, A ∧ D = 0,
D ≤ A + B + C, B ∧ C = 0,

B ∧ D = 0,
C ∧ D = 0.

Lemma
Any L satisfying the above
demands ≥ ωω-fickleness.

The pinball construction hints
at the ≥ ωω-fickleness
demanded:

abab
A∧B
A∧C
A∧D
B∧C
B∧D
C∧D

A∧B
A∧C
A∧D
B∧C
B∧D
C∧D
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Alternative Conditions that Demand ≥ ωω-Fickleness
Conjecture
Every lattice L satisfying the previous conditions already
contains a copy of a 3 independent elements lattice that
demands ≥ ωω-fickleness.

≥ ωω

A DB C

A B C D
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Infinite Semilattice

Open Question
Are there infinite semilattices that characterize ≥ ω2-fickleness?
Consider the infinite upper semilattice obtained by removing the
meet from L7, i.e. A ∩ C does not exist.

Theorem
L7 without meet characterizes > ω-fickleness.

A CB

JA : A = ∆A(B,C),

JC : C = ∆C(A,B),

DΨ : A 6= Ψ(B),

M ′
Φ : Φ0(A) = Φ1(C) = W =⇒ (∃κ)W = κ(B),

R : A ∧ C does not exist.
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One Non-meet Demands > ω-Fickleness

M ′
Φ : Φ0(A) = Φ1(C) = W =⇒ (∃κ)W = κ(B)

M ′-strategy: Wait for Φ0(A, y) = Φ1(C, y). Pick large use k(y).
Allow simultaneous injury on A and C sides only if some
b ≤ k(y) enters B at the same time.

D vs M ′: D wants to enumerate an ac-trace. To minimize
demanded fickleness we are tempted to enumerate the entire
trace simultaneously. But that requires us to put some b into B.
M ′ needs to know this b early, possibly picking b before D is
realized. But then D will be unrealized when b enters B. So we
cannot avoid enumerating the ac-trace one element at a time
and demanding > ω-fickleness.
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One Non-meet Demands > ω-Fickleness

RV ΓΞ : V 6≥ A & Γ0(A) = Γ1(C) = V =⇒ (∃Θ,U)
Θ0(A) = Θ1(C) = U & U 6= Ξ(V ).

A C

∃U+V
V

R-strategy (Ambos-Spies 1984): Pick large x , θ0(x), θ1(x). Wait
for x to be realized (Ξ(x) = 0). Wait for θ0(x) to be lifted above
the use for realization, which must occur if V 6≥ A.
Simultaneously put θ0(x) into A, θ1(x) into C, x into U. Restrain
A to prevent unrealization.
R vs M ′: R simultaneously injures A and C computations. M ′

allows that if some b also enters B. M ′ needs b to be picked
early, sometimes before R is realized. This is alright because R
never restrains B. All enumerations are done simultaneously,
so 1 permission is enough.
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Two Equal Non-meets Demand ≥ ωω-Fickleness

Theorem
Consider the lattice L shown below, which is the same as the
earlier 2-meet lattice after ensuring that A ∧ B and A ∧ C do not
exist. L characterizes ≥ ωω-fickleness.

A BC

JA : A = ∆A(B,C),

JC : C = ∆C(A,B),

DΨ : A 6= Ψ(B),

M ′
ACΦ : Φ0(A) = Φ1(C) = W =⇒ (∃κ)W = κ(B),

M ′
ABΦ : Φ0(A) = Φ1(B) = W =⇒ (∃κ)W = κ(C),

R : A ∧ C does not exist.
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Two Equal Non-meets Demand ≥ ωω-Fickleness

D vs M ′
AC , M ′

AB: Like before, even though M ′ allows
simultaneous injury, we cannot reduce the demanded
fickleness because we might unrealize D.

R vs M ′
AC , M ′

AB: Like before, R needs to put some a into A and
c into C simultaneously. M ′

AC allows this because R can pick
some b early enough to be put into B. But by M ′

AB, the a, b
enumerations forces R to pick some c′ early enough to be put
into C. We can choose c′ = c since R does not impose a
restraint on C. All enumerations are done simultaneously, so
fickleness of 1 is sufficient.
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Three Equal Non-meets

What if we add the final type of M ′ requirement?

A BC

1-3-1 without meet

JA : A = ∆A(B,C),

JC : C = ∆C(A,B),

DΨ : A 6= Ψ(B),

M ′
ACΦ : Φ0(A) = Φ1(C) = W =⇒ (∃κ)W = κ(B),

M ′
ABΦ : Φ0(A) = Φ1(B) = W =⇒ (∃κ)W = κ(C),

M ′
BCΦ : Φ0(B) = Φ1(C) = W =⇒ (∃κ)W = κ(A),

R : A ∧ C does not exist.
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Three Equal Non-meets

R vs M ′
AB, M ′

AC , M ′
BC : R cannot help but injure the A,B,C-gates

simultaneously via a,b, c traces. M ′
AB (M ′

AC) allowed the
AB-injury (AC) because c (b) could be chosen early enough.
Likewise, M ′

BC will allow the BC-injury if a can be chosen early
enough. But we cannot choose a early if we want to avoid
unrealizing R.

Conjecture
1-3-1 without meet cannot be bounded in the r.e. degrees.
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