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Independence on ω

Independence Number

A family A ⊆ [ω]ω is said to be independent for any two non-empty
finite disjoint subfamilies A0 and A1 the set⋂

A0\
⋃

A1

is infinite. It is a maximal independent family if it is maximal under
inclusion and

i = min{|A | : A is a m.i.f.}
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Independence on ω

Boolean combinations
Functions h : A →{0,1} where |dom(A )|< ω and
A h =

⋂
{A : A ∈ h−1(0)}∩

⋂
{ω\A : A ∈ h−1(1)}.

FF(A ) = {h : A →{0,1} | |domh|< ω}.
{A h : h ∈ FF(A )} is the collection of all Boolean combinations of A .
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Independence on ω

Countable independent families are not maximal
Let A be a countable independent family and let {hn}n∈ω be an
enumeration of FF(A ) so that each element appears cofinally often.
Inductively define {a2n,a2n+1}n∈ω so that

a2n,a2n+1belong to A hn\{a2k ,a2k+1}k<n.

Then A = {a2n}n∈ω is independent over A .
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Independence on ω

Fichtenholz-Kantorovich
Let C = [Q]<ω and for r ∈ R let

Ar = {a ∈ C : a∩ (−∞, r ] is even}.

Then whenever S,T are finite disjoint sets of reals, the set⋂
r∈S

Ar ∩ (C\
⋃
r∈T

Ar )

is infinite. Thus, there is always a m.i.f. of size c.
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Independence on ω

r≤ i

Let A be a m.i.f. and X ∈ [ω]ω\A . By maximality of A , ∃h ∈ FF(A )
such that either A h∩X or A h\X is finite. Thus A h is not split by X .

d≤ i

If D ⊆ ωω is such that for each h ∈ ωω there is g ∈D such that
h(n)≤ g(n) for all but finitely many n, then |D | ≤ i.
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Detour

i vs. u
In the Miller model u< i, while Shelah devised a special ωω-bounding
poset the countable support iteration of which produces a model of
i = ℵ1 < u = ℵ2.

a vs. u
In the Cohen model a< u, while assuming the existence of a
measurable one can show the consistency of u< a. The use of a
measurable has been eliminated by Guzman and Kalajdzievski.
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Detour

a vs i

In the Cohen model a< i = c.

Question:
Is it consistent that i< a?
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Sacks indestructibility

... and once again Maximality

∀X ∈ [ω]ω\A ∃h ∈ FF(A ) such that A h∩X or A h\X is finite.

Dense maximality
Let A be an independent family. Then A is said to be densely
maximal if for each X ∈ [ω]ω\A and every h ∈ FF(A ) there is
h′ ∈ FF(A ) such that h′ ⊇ h and A h′ ∩X or A h′\X is finite.
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Sacks indestructibility

Density filter
Let A be an independent family. Then

fil(A ) = {Y ∈ [ω]ω : ∀h ∈ FF(A )∃h′ ∈ FF(A ) s.t. h′ ⊇ h and A h′ ⊆ Y}

is referred to as the density filter of A .
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Sacks indestructibility

Definition: Ramsey filter

A p-filter F is said to be Ramsey if for every partition E = {En}n∈ω of ω

into finite sets such that ω\En ∈F for each n, there is a set {kn}n∈ω in
F such that kn ∈ En for each n.

Definition: Selective independence
A densely maximal independent family A is said to be selective if
fil(A ) is Ramsey.
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Sacks indestructibility

Theorem (Shelah)
Selective independent families exists under CH.
They are indestructible by a countable support iterations and
countable support products of Sacks forcing.

Corollary
It is consistent that i< c.
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Sacks indestructibility

Definition
Let P be the partial order

of all pairs (A ,A) where A is a countable independent family and
A ∈ [ω]ω such that for all h ∈ FF(A ) the set A h∩A is infinite;
with extension relation defined as follows

(B,B)≤ (A ,A) iff B ⊇A and B ⊆∗ A.
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Sacks indestructibility

Lemma (CH)
The partial order P is countably closed and ℵ2-cc. Moreover, if G is
P-generic, then AG =

⋃
{A : ∃A(A ,A) ∈G} is a selective independent

family.

More precisely
AG is densely maximal;
fil(AG) is generated by {A : ∃A (A ,A) ∈G}∪Fr;
fil(A ) is Ramsey.
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Sacks indestructibility

Definition: Spectrum of Independence

sp(i) = {|A | : A is a max. ind. family}

Theorem (F., Shelah)
Assume CH. Let κ be a regular uncountable cardinal. Then

V Sκ � sp(i) = {ℵ1,κ}.
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Diagonalization filters

A -diagonalization filters (F., Shelah)
Let A be an independent family. A filter U is said to be an
A -diagonalization filter if

∀F ∈U ∀h ∈ FF(A )(|F ∩A h|= ω)

and is maximal with respect to the above property.
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Diagonalization filters

Lemma (F., Shelah)

If U is a A -diagonalization filter and G is M(U )-generic and
xG =

⋃
{s : ∃F (s,F ) ∈G}, then:

1 A ∪{xG} is independent
2 If y ∈ ([ω]ω\A )∩V is such that A ∪{y} is independent, then

A ∪{xG,y} is not independent.
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Diagonalization filters

Definition
We say that y diagonalizes A over V0 (in V1) iff

1 V1 extends V0, (A is independent)V0

2 whenever x ∈ ([ω]ℵ0)V0\A such that V0 � A ∪{x} is independent,
then V1 � A ∪{x ,y} is not independent.

Corollary

If U an A -diagonalization filter and G is a M(U )-generic, then
σG =

⋃
{s : ∃A(s,A) ∈G} diagonalizes A over the ground model.
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Diagonalization filters

Corollary
Let κ be a regular uncountable cardinal. Then consistently

ℵ1 < i = κ < c.

Proof:
Let λ > κ be the desired size of the continuum. The ordinal product
γ∗ = λ ·κ contains an unbounded subset I of cardinality κ. Consider
a finite support iteration of length γ∗ such that along I we

recursively generate a max. independent family of cardinality κ,
as well as a scale of length κ,

and along γ∗\I , we add Cohen reals. Then in the final generic
extension

ℵ1 < d = κ ≤ i≤ κ < c = λ .
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Diagonalization filters

Question:
Can we adjoin via forcing a max. independent family of cardinality ℵω?
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Diagonalization filters

Theorem (F., Shelah)
Assume GCH. Let κ1 < · · ·< κn be regular uncountable cardinals.
There is a ccc generic extension in which {κi}ni=1 ⊆ sp(i).

Proof:
Consider a finite support iteration of length γ∗, where γ∗ is the ordinal
product κn ·κn−1 · · ·κ1 and elaborate on the previous idea.
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Taking Ultrapowers

Ultrapowers

Let κ a measurable and let D ⊆P(κ) be a κ-complete ultrafilter. Let P
be a p.o. Then Pκ/D consists of all equivalence classes

[f ] = {g ∈ κP : {α ∈ κ : f (α) = g(α)} ∈D}

and is supplied with the p.o. relation [f ]≤ [q] iff

{α ∈ κ : f (α)≤P g(α)} ∈D .

We can identify each p ∈ P with [p] = [fp], where fp(α) = p for each
α ∈ κ and so we can assume P⊆ Pκ/D .
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Taking Ultrapowers

Lemma
1 The poset P is a complete suborder of Pκ/D if and only if P is

κ-cc. Thus, if P is ccc, then PlPκ/D .
2 If P has the countable chain condition, then so does Pκ/D .

Lemma
Let A be a P-name for an independent family of cardinality ≥ κ. Then


Pκ/D A is not maximal.
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Taking Ultrapowers

Theorem (F., Shelah, 2018)
Let κ1 < κ2 < · · ·< κn be measurable witnessed by κi -complete
ultrafilters Di ⊆P(κi). There is a ccc generic extension in which

{κi}ni=1 = sp(i).

Proof/Idea:
Let γ∗ = κn ·κn−1 · · ·κ1 and for each j ∈ {1, · · · ,k} fix an unbounded
subset Ij in γ∗. Along each Ij

iteratively generate a max. ind. family of cardinality κj

and for unboundedly many α ∈Ij take the ultrapower Pκj
α /Dj .
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Large Spectrum

Do we need a measurable?

Lemma
Let A be an independent family and let U be a diagonalization filter
for A . Let n ∈ ω and for each i ∈ n let Ui = U . Moreover let
G = ∏i∈n Gi be a P = ∏i∈nM(Ui)-generic filter. Then in V [G]:

1 A ∪{xi}i∈n is independent.
2 For all y ∈ (V\A )∩ [ω]ω such that A ∪{y} is independent and

each i ∈ n, the family A ∪{y ,xi} is not independent.
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Large Spectrum

Claim (GCH)
Given an arbitrary uncountable cardinal θ , there is a ccc poset,
which adjoins a max. independent family of cardinality θ .
In particular, there is a ccc poset adjoining a maximal independent
family of cardinality ℵω .
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Large Spectrum

Definition
Fix σ ≤ θ ≤ λ , where:

σ is regular uncountable (the intended value of i),
λ is of uncountable cofinality (the intended value of c).
Let S ⊆ θ<σ be a well-prunded θ -splitting tree of height σ .
For each α < σ , let Sα be the α-th level of S.

Recursively define a finite support iteration

PS = 〈Pα ,Q̇α : α ≤ σ ,β < σ〉

of length σ as follows:
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Large Spectrum

Let P0 = { /0}, Q̇0 be a P0-name for the trivial poset.
Let A0 = /0 and let U0 be an arbitrary ultrafilter extending the
Frechét filter. For each η ∈ S1 = succS( /0), let Uη = U0 and let

Q1 = ∏
η∈S1

M(Uη )

with finite supports.

In VP1∗Q̇1 for each η ∈ S1 let aη be the M(Uη )-generic real.
Suppose α ≥ 2 and in VPα for all η ∈ Sα ,

Aη = {aν : ν ∈ succS(η � ξ ),ξ < α}

is independent. For each η ∈ Sα , let Uη be a Aη -diagonalization
filter and let Qα = ∏η∈Sα

M(Uη ) with finite supports.

In VPα∗Q̇α for each η ∈ Sα let aη be the M(Uη )-generic real.
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Large Spectrum

Lemma

In VPS for each branch η ∈ [S] the family

Aη = {aν : ν ∈ succ(η � ξ ),ξ < α}

is a maximal independent family of cardinality θ .

Proof:
Maximality follows from the diagonalization properties and the fact that
the length of the iteration is of uncountable cofinality.
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Large Spectrum

Theorem (F., Shelah, 2020)
Assume GCH. Let σ be a regular uncountable cardinal, λ a cardinal of
uncountable cofinality such that σ ≤ λ . Let

Θ1 ⊆ [σ ,λ ] be such that σ = minΘ1, maxΘ1 = λ ,
and let Θ0 = [σ ,λ ]\(Θ1∪{λ}).

If |Θ1|< minΘ0, then there is a ccc generic extension in which

sp(i) = Θ1∪{λ}.
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Large Spectrum

Corollary (F., Shelah)
Assume GCH. Any countable set Θ of uncountable cardinals such that
minΘ is regular and supΘ = maxΘ is of uncountable cofinality can be
realized in a ccc generic extension as the spectrum of independence.

Corollary

Assume GCH and let C ⊆ {ℵn}1≤n<ω . Then there is a ccc generic
extension in which

sp(i) = C.
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Large Spectrum

Question:
Is it consistent that i = ℵω?

Vera Fischer (University of Vienna) Independent Families November 3rd, 2020 32 / 50



Higher independence

Definition
Let κ be a regular uncountable cardinal, A ⊆ [κ]κ .

Let FF<ω,κ (A ) be the set of all finite partial functions with domain
included in A and range the set {0,1}.
For each h ∈ FF<ω,κ (A ) let A h =

⋂
{Ah(A) : A ∈ dom(h)} where

Ah(A) = A if h(A) = 0 and Ah(A) = κ\A if h(A) = 1.
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Higher independence

Definition
1 A family A ⊆ [κ]κ is said to be κ-independent if for each

h ∈ FF<ω,κ (A ), A h is unbounded. It is maximal κ-independent
family if it is κ-independent, maximal under inclusion.

2 The least size of a maximal κ-independent family is denoted i(κ).
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Higher independence

Lemma (F., Montoya)
Let κ be a regular infinite cardinal.

1 There is a maximal κ-independent family of cardinality 2κ .
2 κ+ ≤ i(κ)≤ 2κ

3 r(κ)≤ i(κ)

4 d(κ)≤ i(κ).

Corollary

If κ is regular uncountable, then if i(κ) = κ+ also a(κ) = κ+.
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Higher independence

Definition: κ-dense maximality

A κ-independent family A is densely maximal if for every X ∈ [κ]κ\A
and every h ∈ FF<ω,κ (A ) there is h′ ∈ FF<ω,κ (A ) such that h′ ⊇ h and

either A h′ ∩X = /0 or A h′ ∩ (κ\X ) = /0.
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κ-Sacks indestructibility

Definition (F., Montoya)
Let κ be a measurable cardinal and U a normal measure on κ. Let
PU be the poset of all pairs (A ,A) where

A is a κ-independent family of cardinality κ,
A ∈U is such that ∀h ∈ FF<ω,κ (A ), A h∩A is unbounded.

The extension relation is defined as follows: (A1,A1)≤ (A0,A0) iff
A1 ⊇A0 and A1 ⊆∗ A0.
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κ-Sacks indestructibility

Lemma (F., Montoya)

Assume 2κ = κ+. Then PU is κ+-closed and κ++-cc and if G is a
PU -generic filter, then

AG =
⋃
{A : ∃A ∈U with (A ,A) ∈G}

is a densely maximal κ-independent family.
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κ-Sacks indestructibility

Remark
Let fil<ω,κ (AG) be the filter of all X ∈U such that ∀h ∈ FF<ω,κ (AG)
there is h′ ∈ FF<ω,κ (AG) such that h′ ⊇ h and A h′ ⊆ X . Then:

fil<ω,κ (AG) is κ-complete.
Every H ∈ [fil<ω,κ (AG)]≤κ has a pseudo-intersection in
fil<ω,κ (AG).
If f ∈ V ∩ κκ is strictly increasing, then ∃a ∈ fil<ω,κ (AG) such that

f (a(i)) < a(i)

for all i ∈ κ, where {a(i)}i∈κ is the increasing enumeration of a.
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κ-Sacks indestructibility

Theorem (F., Montoya)
(GCH) Let κ be a measurable cardinal and let U be a normal measure
on κ. The generic maximal independent family AG adjoined by PU

remains maximal after the κ-support product Sλ
κ .
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κ-Sacks indestructibility

Corollary
Let κ be a measurable cardinal. There is a cardinal preserving generic
extension in which

a(κ) = d(κ) = r(κ) = i(κ) = κ
+ < 2κ .
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κ-Sacks indestructibility

Question
Let κ be a regular uncountable cardinal. Is it consistent that

κ
+ < i(κ) < 2κ ?
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κ-Sacks indestructibility

Definition
Let A be a κ-independent family. A κ-complete filter F is said to be
an κ-diagonalization filter for A if

∀F ∈F∀h ∈ FF<ω,κ (A )|F ∩A h|= κ

and F is maximal with respect to the above property.
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κ-Sacks indestructibility

Question
Given a κ-independent family A is there a κ-diagonalizazion filter
for A ?
Is there a large cardinal property which guarantees the existence
of such maximal filter?
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Strong-κ-independence

Definition
Let κ be a regular uncountable cardinal, A ⊆ [κ]κ of size at least κ.

1 Let FF<κ,κ (A ) = {h : A →{0,1} : such that |dom(h)|< κ}.
2 For each h ∈ FF<κ,κ (A ) let A h =

⋂
{Ah(A) : A ∈ dom(h)} where

Ah(A) = A if h(A) = 0 and Ah(A) = κ\A if h(A) = 1.
3 A is said to be strongly-κ-independent if for each h ∈ FF<κ,κ (A ),

A h is unbounded.
4 A is maximal strongly-κ-independent family if it is κ-independent,

maximal under inclusion.
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Strong-κ-independence

Lemma (F., Montoya)
Let κ be a regular infinite cardinal.

1 For κ strongly inaccessible, there is a strongly-κ-independent
family of cardinality 2κ .

2 If A is strongly-κ-independent and |A |< r(κ) then A is not
maximal.

3 Suppose d(κ) is such that for every γ < d(κ), γ<κ < d(κ). If A is
strongly-κ-independent and |A |< d(κ) then A is not maximal.
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Strong-κ-independence

Corollary
Thus if

is(κ) = min{|A | : A maximal strongly-κ-independent family}

is defined, then
κ+ ≤ is(κ)≤ 2κ ;
r(κ)≤ is(κ);
if for every γ < d(κ), γ<κ < d(κ), then d(κ)≤ is(κ).
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Strong-κ-independence

Theorem (Kunen, 1983)
1 The existence of a maximal strongly-ω1-independent family

implies CH and the existence of a weakly inaccessible cardinal
between ω1 and 2ω1 ;

2 The existence of a measurable cardinal is equiconsistent with the
existence of a maximal strongly-ω1-independent family.
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Strong-κ-independence

Thank you for your attention!
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Strong-κ-independence
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