Independent families in the countable and the uncountable

Vera Fischer

University of Vienna

November 3rd, 2020

Vera Fischer (University of Vienna)

Independent Families

Independence Number

A family $\mathscr{A} \subseteq [\omega]^{\omega}$ is said to be independent for any two non-empty finite disjoint subfamilies \mathscr{A}_0 and \mathscr{A}_1 the set

 $\bigcap \mathscr{A}_0 \backslash \bigcup \mathscr{A}_1$

is infinite. It is a maximal independent family if it is maximal under inclusion and

 $\mathfrak{i} = \min\{|\mathscr{A}| : \mathscr{A} \text{ is a m.i.f.}\}$

Vera Fischer (University of Vienna)

< ロ > < 同 > < 回 > < 回 >

Boolean combinations

• Functions $h: \mathscr{A} \to \{0,1\}$ where $|\text{dom}(\mathscr{A})| < \omega$ and $\mathscr{A}^h = \bigcap \{A : A \in h^{-1}(0)\} \cap \bigcap \{\omega \setminus A : A \in h^{-1}(1)\}.$

•
$$\mathsf{FF}(\mathscr{A}) = \{h : \mathscr{A} \to \{0,1\} \mid |\operatorname{dom} h| < \omega\}.$$

 $\{\mathscr{A}^h : h \in FF(\mathscr{A})\}$ is the collection of all Boolean combinations of \mathscr{A} .

Countable independent families are not maximal

Let \mathscr{A} be a countable independent family and let $\{h_n\}_{n \in \omega}$ be an enumeration of $FF(\mathscr{A})$ so that each element appears cofinally often. Inductively define $\{a_{2n}, a_{2n+1}\}_{n \in \omega}$ so that

$$a_{2n}, a_{2n+1}$$
 belong to $\mathscr{A}^{h_n} \setminus \{a_{2k}, a_{2k+1}\}_{k < n}$.

Then $A = \{a_{2n}\}_{n \in \omega}$ is independent over \mathscr{A} .

Vera Fischer (University of Vienna)

- - E > - E >

Fichtenholz-Kantorovich

Let $C = [\mathbb{Q}]^{<\omega}$ and for $r \in \mathbb{R}$ let

$$A_r = \{a \in C : a \cap (-\infty, r] \text{ is even}\}.$$

Then whenever S, T are finite disjoint sets of reals, the set

$$\bigcap_{r\in\mathcal{S}}A_r\cap(C\setminus\bigcup_{r\in T}A_r)$$

is infinite. Thus, there is always a m.i.f. of size c.

1

$\mathfrak{r} \leq \mathfrak{i}$

Let \mathscr{A} be a m.i.f. and $X \in [\omega]^{\omega} \setminus \mathscr{A}$. By maximality of $\mathscr{A}, \exists h \in FF(\mathscr{A})$ such that either $\mathscr{A}^h \cap X$ or $\mathscr{A}^h \setminus X$ is finite. Thus \mathscr{A}^h is not split by X.

$\mathfrak{d} \leq \mathfrak{i}$

If $\mathscr{D} \subseteq {}^{\omega}\omega$ is such that for each $h \in {}^{\omega}\omega$ there is $g \in \mathscr{D}$ such that $h(n) \leq g(n)$ for all but finitely many *n*, then $|\mathscr{D}| \leq i$.

i vs. u

In the Miller model u < i, while Shelah devised a special ${}^{\omega}\omega$ -bounding poset the countable support iteration of which produces a model of $i = \aleph_1 < u = \aleph_2$.

a vs. u

In the Cohen model a < u, while assuming the existence of a measurable one can show the consistency of u < a. The use of a measurable has been eliminated by Guzman and Kalajdzievski.

→ ∃ → < ∃ →</p>

a vs i

In the Cohen model a < i = c.

Question:

Is it consistent that i < a?

Vera Fischer (University of Vienna)

Independent Families

э November 3rd, 2020 8/50

→ Ξ →

< A

... and once again Maximality

 $\forall X \in [\omega]^{\omega} \setminus \mathscr{A} \exists h \in \mathsf{FF}(\mathscr{A}) \text{ such that } \mathscr{A}^h \cap X \text{ or } \mathscr{A}^h \setminus X \text{ is finite.}$

Dense maximality

Let \mathscr{A} be an independent family. Then \mathscr{A} is said to be densely maximal if for each $X \in [\omega]^{\omega} \setminus \mathscr{A}$ and every $h \in FF(\mathscr{A})$ there is $h' \in FF(\mathscr{A})$ such that $h' \supseteq h$ and $\mathscr{A}^{h'} \cap X$ or $\mathscr{A}^{h'} \setminus X$ is finite.

Density filter

Let \mathscr{A} be an independent family. Then

$$\mathsf{fil}(\mathscr{A}) = \{ \mathsf{Y} \in [\omega]^{\omega} : \forall h \in \mathsf{FF}(\mathscr{A}) \exists h' \in \mathsf{FF}(\mathscr{A}) \text{ s.t. } h' \supseteq h \text{ and } \mathscr{A}^{h'} \subseteq \mathsf{Y} \}$$

is referred to as the density filter of \mathscr{A} .

Definition: Ramsey filter

A *p*-filter \mathscr{F} is said to be Ramsey if for every partition $\mathscr{E} = \{E_n\}_{n \in \omega}$ of ω into finite sets such that $\omega \setminus E_n \in \mathscr{F}$ for each *n*, there is a set $\{k_n\}_{n \in \omega}$ in \mathscr{F} such that $k_n \in E_n$ for each *n*.

Definition: Selective independence

A densely maximal independent family \mathscr{A} is said to be selective if $fil(\mathscr{A})$ is Ramsey.

Theorem (Shelah)

- Selective independent families exists under CH.
- They are indestructible by a countable support iterations and countable support products of Sacks forcing.

Corollary

It is consistent that i < c.

Definition

Let $\ensuremath{\mathbb{P}}$ be the partial order

- of all pairs (𝔄, 𝔄) where 𝔄 is a countable independent family and 𝔄 ∈ [ω]^ω such that for all h ∈ FF(𝔄) the set 𝔄^h ∩ 𝔄 is infinite;
- with extension relation defined as follows

 $(\mathscr{B}, B) \leq (\mathscr{A}, A) \text{ iff } \mathscr{B} \supseteq \mathscr{A} \text{ and } B \subseteq^* A.$

Lemma (CH)

The partial order \mathbb{P} is countably closed and \aleph_2 -cc. Moreover, if *G* is \mathbb{P} -generic, then $\mathscr{A}_G = \bigcup \{ \mathscr{A} : \exists A(\mathscr{A}, A) \in G \}$ is a selective independent family.

More precisely

- \mathscr{A}_G is densely maximal;
- fil(\mathscr{A}_G) is generated by $\{A : \exists \mathscr{A}(\mathscr{A}, A) \in G\} \cup Fr;$
- fil(𝒜) is Ramsey.

Definition: Spectrum of Independence $\mathfrak{sp}(\mathfrak{i}) = \{|\mathscr{A}| : \mathscr{A} \text{ is a max. ind. family} \}$

Theorem (F., Shelah)

Assume CH. Let κ be a regular uncountable cardinal. Then

$$V^{\mathbb{S}_{\kappa}} \vDash \mathfrak{sp}(\mathfrak{i}) = \{\mathfrak{K}_1, \kappa\}.$$

Vera Fischer (University of Vienna)

★ ∃ >

A-diagonalization filters (F., Shelah)

Let \mathscr{A} be an independent family. A filter \mathscr{U} is said to be an \mathscr{A} -diagonalization filter if

$$\forall F \in \mathscr{U} \forall h \in \mathsf{FF}(\mathscr{A})(|F \cap \mathscr{A}^h| = \omega)$$

and is maximal with respect to the above property.

Lemma (F., Shelah)

If \mathscr{U} is a \mathscr{A} -diagonalization filter and G is $\mathbb{M}(\mathscr{U})$ -generic and $x_G = \bigcup \{s : \exists F(s, F) \in G\}$, then:

- $\mathscr{A} \cup \{x_G\}$ is independent
- If y ∈ ([ω]^ω\𝒜) ∩ V is such that 𝒜 ∪ {y} is independent, then 𝒜 ∪ {x_G, y} is not independent.

Definition

We say that y diagonalizes \mathscr{A} over V_0 (in V_1) iff

- V₁ extends V_0 , (\mathscr{A} is independent)^{V₀}
- ② whenever $x \in ([\omega]^{\aleph_0})^{V_0} \setminus \mathscr{A}$ such that $V_0 \vDash \mathscr{A} \cup \{x\}$ is independent, then $V_1 \vDash \mathscr{A} \cup \{x, y\}$ is not independent.

Corollary

If \mathscr{U} an \mathscr{A} -diagonalization filter and G is a $\mathbb{M}(\mathscr{U})$ -generic, then $\sigma_G = \bigcup \{s : \exists A(s, A) \in G\}$ diagonalizes \mathscr{A} over the ground model.

< ロ > < 同 > < 回 > < 回 >

Corollary

Let κ be a regular uncountable cardinal. Then consistently

 $\aleph_1 < \mathfrak{i} = \kappa < \mathfrak{c}.$

Proof:

Let $\lambda > \kappa$ be the desired size of the continuum. The ordinal product $\gamma^* = \lambda \cdot \kappa$ contains an unbounded subset \mathscr{I} of cardinality κ . Consider a finite support iteration of length γ^* such that along \mathscr{I} we

- recursively generate a max. independent family of cardinality κ,
- as well as a scale of length κ,

and along $\gamma^* \backslash \mathscr{I},$ we add Cohen reals. Then in the final generic extension

$$\aleph_1 < \mathfrak{d} = \kappa \leq \mathfrak{i} \leq \kappa < \mathfrak{c} = \lambda.$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Question:

Can we adjoin via forcing a max. independent family of cardinality \aleph_{ω} ?

Vera Fischer (University of Vienna)

Independent Families

November 3rd, 2020 20/50

31.5

< A >

Theorem (F., Shelah)

Assume *GCH*. Let $\kappa_1 < \cdots < \kappa_n$ be regular uncountable cardinals. There is a ccc generic extension in which $\{\kappa_i\}_{i=1}^n \subseteq \mathfrak{sp}(\mathfrak{i})$.

Proof:

Consider a finite support iteration of length γ^* , where γ^* is the ordinal product $\kappa_n \cdot \kappa_{n-1} \cdots \kappa_1$ and elaborate on the previous idea.

Vera Fischer (University of Vienna)

→ ∃ → < ∃</p>

Ultrapowers

Let κ a measurable and let $\mathscr{D} \subseteq \mathscr{P}(\kappa)$ be a κ -complete ultrafilter. Let \mathbb{P} be a p.o. Then $\mathbb{P}^{\kappa}/\mathscr{D}$ consists of all equivalence classes

$$[f] = \{ g \in {}^\kappa \mathbb{P} : \{ lpha \in \kappa : f(lpha) = g(lpha) \} \in \mathscr{D} \}$$

and is supplied with the p.o. relation $[f] \leq [q]$ iff

$$\{lpha\in\kappa\colon f(lpha)\leq_{\mathbb{P}}g(lpha)\}\in\mathscr{D}.$$

We can identify each $p \in \mathbb{P}$ with $[p] = [f_p]$, where $f_p(\alpha) = p$ for each $\alpha \in \kappa$ and so we can assume $\mathbb{P} \subseteq \mathbb{P}^{\kappa} / \mathscr{D}$.

.

Image: A math

Lemma

- The poset \mathbb{P} is a complete suborder of \mathbb{P}^{κ}/D if and only if \mathbb{P} is κ -cc. Thus, if \mathbb{P} is ccc, then $\mathbb{P} < \mathbb{P}^{\kappa}/\mathcal{D}$.
- 2 If \mathbb{P} has the countable chain condition, then so does $\mathbb{P}^{\kappa}/\mathscr{D}$.

Lemma

Let \mathscr{A} be a \mathbb{P} -name for an independent family of cardinality $\geq \kappa$. Then

 $\Vdash_{\mathbb{P}^{\kappa}/\mathscr{D}}\mathscr{A} \text{ is not maximal.}$

Vera Fischer (University of Vienna)

< ロ > < 同 > < 回 > < 回 >

Theorem (F., Shelah, 2018)

Let $\kappa_1 < \kappa_2 < \cdots < \kappa_n$ be measurable witnessed by κ_i -complete ultrafilters $\mathscr{D}_i \subseteq \mathscr{P}(\kappa_i)$. There is a ccc generic extension in which

$$\{\kappa_i\}_{i=1}^n = \mathfrak{sp}(\mathfrak{i}).$$

Proof/Idea:

Let $\gamma^* = \kappa_n \cdot \kappa_{n-1} \cdots \kappa_1$ and for each $j \in \{1, \cdots, k\}$ fix an unbounded subset \mathscr{I}_j in γ^* . Along each \mathscr{I}_j

- iteratively generate a max. ind. family of cardinality κ_i
- and for unboundedly many $\alpha \in \mathscr{I}_j$ take the ultrapower $\mathbb{P}_{\alpha}^{\kappa_j}/\mathscr{D}_j$.

-

< ロ > < 同 > < 回 > < 回 > < 回 > <

Do we need a measurable?

Lemma

Let \mathscr{A} be an independent family and let \mathscr{U} be a diagonalization filter for \mathscr{A} . Let $n \in \omega$ and for each $i \in n$ let $\mathscr{U}_i = \mathscr{U}$. Moreover let

- $G = \prod_{i \in n} G_i$ be a $\mathbb{P} = \prod_{i \in n} \mathbb{M}(\mathscr{U}_i)$ -generic filter. Then in V[G]:
 - $\mathscr{A} \cup \{x_i\}_{i \in n}$ is independent.
 - Sor all y ∈ (V\𝔄) ∩ [ω]^ω such that 𝔄 ∪ {y} is independent and each i ∈ n, the family 𝔄 ∪ {y, x_i} is not independent.

イロト イポト イラト イラト

Claim (GCH)

- Given an arbitrary uncountable cardinal θ, there is a ccc poset, which adjoins a max. independent family of cardinality θ.
- In particular, there is a ccc poset adjoining a maximal independent family of cardinality \$\$_ω.

Definition

Fix $\sigma \leq \theta \leq \lambda$, where:

- σ is regular uncountable (the intended value of i),
- λ is of uncountable cofinality (the intended value of c).
- Let $S \subseteq \theta^{<\sigma}$ be a well-prunded θ -splitting tree of height σ .
- For each $\alpha < \sigma$, let S_{α} be the α -th level of S.

Recursively define a finite support iteration

$$\mathbb{P}_{\mathcal{S}} = \langle \mathbb{P}_{lpha}, \dot{\mathbb{Q}}_{lpha} : lpha \leq \sigma, eta < \sigma
angle$$

of length σ as follows:

★ ∃ > < ∃ >

- Let $\mathbb{P}_0 = \{\emptyset\}$, $\dot{\mathbb{Q}}_0$ be a \mathbb{P}_0 -name for the trivial poset.
- Let A₀ = Ø and let U₀ be an arbitrary ultrafilter extending the Frechét filter. For each η ∈ S₁ = succ_S(Ø), let U_η = U₀ and let

$$\mathbb{Q}_1 = \prod_{\eta \in S_1} \mathbb{M}(\mathscr{U}_\eta)$$

with finite supports.

- In $V^{\mathbb{P}_1 * \dot{\mathbb{Q}}_1}$ for each $\eta \in S_1$ let a_η be the $\mathbb{M}(\mathscr{U}_\eta)$ -generic real.
- Suppose $\alpha \geq 2$ and in $V^{\mathbb{P}_{\alpha}}$ for all $\eta \in S_{\alpha}$,

$$\mathscr{A}_{\eta} = \{a_{v} : v \in \mathsf{succ}_{\mathcal{S}}(\eta \restriction \xi), \xi < \alpha\}$$

is independent. For each $\eta \in S_{\alpha}$, let \mathscr{U}_{η} be a \mathscr{A}_{η} -diagonalization filter and let $\mathbb{Q}_{\alpha} = \prod_{\eta \in S_{\alpha}} \mathbb{M}(\mathscr{U}_{\eta})$ with finite supports.

• In $V^{\mathbb{P}_{\alpha}*\dot{\mathbb{Q}}_{\alpha}}$ for each $\eta \in S_{\alpha}$ let a_{η} be the $\mathbb{M}(\mathscr{U}_{\eta})$ -generic real.

SEA 3

Lemma

In $V^{\mathbb{P}_S}$ for each branch $\eta \in [S]$ the family

$$\mathscr{A}_\eta = \{ a_{v} : v \in \mathsf{succ}(\eta \restriction \xi), \xi < lpha \}$$

is a maximal independent family of cardinality θ .

Proof:

Maximality follows from the diagonalization properties and the fact that the length of the iteration is of uncountable cofinality.

Theorem (F., Shelah, 2020)

Assume GCH. Let σ be a regular uncountable cardinal, λ a cardinal of uncountable cofinality such that $\sigma \leq \lambda$. Let

- $\Theta_1 \subseteq [\sigma, \lambda]$ be such that $\sigma = \min \Theta_1, \max \Theta_1 = \lambda$,
- and let $\Theta_0 = [\sigma, \lambda] \setminus (\Theta_1 \cup \{\lambda\}).$

If $|\Theta_1| < \min \Theta_0$, then there is a ccc generic extension in which

 $\mathfrak{sp}(\mathfrak{i}) = \Theta_1 \cup \{\lambda\}.$

Vera Fischer (University of Vienna)

A B > A B >

Corollary (F., Shelah)

Assume GCH. Any countable set Θ of uncountable cardinals such that $\min \Theta$ is regular and $\sup \Theta = \max \Theta$ is of uncountable cofinality can be realized in a ccc generic extension as the spectrum of independence.

Corollary

Assume GCH and let $C \subseteq \{\aleph_n\}_{1 \le n < \omega}$. Then there is a ccc generic extension in which

 $\mathfrak{sp}(\mathfrak{i}) = C.$

Vera Fischer (University of Vienna)

★ 3 → < 3</p>

Question:

Is it consistent that $i = \aleph_{\omega}$?

Vera Fischer (University of Vienna)

э

Image: A math

Definition

Let κ be a regular uncountable cardinal, $\mathscr{A} \subseteq [\kappa]^{\kappa}$.

- Let FF_{<ω,κ}(𝒜) be the set of all finite partial functions with domain included in 𝒜 and range the set {0,1}.
- For each $h \in FF_{<\omega,\kappa}(\mathscr{A})$ let $\mathscr{A}^h = \bigcap \{A^{h(A)} : A \in \operatorname{dom}(h)\}$ where $A^{h(A)} = A$ if h(A) = 0 and $A^{h(A)} = \kappa \setminus A$ if h(A) = 1.

< 同 > < 三 > < 三 >

Definition

- A family 𝔄 ⊆ [κ]^κ is said to be κ-independent if for each h∈ FF_{<ω,κ}(𝔄), 𝔄^h is unbounded. It is maximal κ-independent family if it is κ-independent, maximal under inclusion.
- 2 The least size of a maximal κ -independent family is denoted $\mathfrak{i}(\kappa)$.

Lemma (F., Montoya)

Let κ be a regular infinite cardinal.

- **①** There is a maximal κ -independent family of cardinality 2^{κ} .
- 2 $\kappa^+ \leq \mathfrak{i}(\kappa) \leq 2^{\kappa}$
- $(\kappa) \leq \mathfrak{i}(\kappa)$

Corollary

If κ is regular uncountable, then if $\mathfrak{i}(\kappa) = \kappa^+$ also $\mathfrak{a}(\kappa) = \kappa^+$.

Vera Fischer (University of Vienna)

イロト イポト イラト イラ

Definition: κ -dense maximality

A κ -independent family \mathscr{A} is densely maximal if for every $X \in [\kappa]^{\kappa} \setminus \mathscr{A}$ and every $h \in FF_{<\omega,\kappa}(\mathscr{A})$ there is $h' \in FF_{<\omega,\kappa}(\mathscr{A})$ such that $h' \supseteq h$ and

either
$$\mathscr{A}^{h'} \cap X = \emptyset$$
 or $\mathscr{A}^{h'} \cap (\kappa \setminus X) = \emptyset$.

Definition (F., Montoya)

Let κ be a measurable cardinal and \mathscr{U} a normal measure on κ . Let $\mathbb{P}_{\mathscr{U}}$ be the poset of all pairs (\mathscr{A}, A) where

- \mathscr{A} is a κ -independent family of cardinality κ ,
- $A \in \mathscr{U}$ is such that $\forall h \in FF_{<\omega,\kappa}(\mathscr{A}), \ \mathscr{A}^h \cap A$ is unbounded.

The extension relation is defined as follows: $(\mathscr{A}_1, A_1) \leq (\mathscr{A}_0, A_0)$ iff $\mathscr{A}_1 \supseteq \mathscr{A}_0$ and $A_1 \subseteq^* A_0$.

Lemma (F., Montoya)

Assume $2^{\kappa} = \kappa^+$. Then $\mathbb{P}_{\mathscr{U}}$ is κ^+ -closed and κ^{++} -cc and if *G* is a $\mathbb{P}_{\mathscr{U}}$ -generic filter, then

$$\mathscr{A}_{G} = \bigcup \{ \mathscr{A} : \exists A \in \mathscr{U} \text{ with } (\mathscr{A}, A) \in G \}$$

is a densely maximal κ -independent family.

Remark

Let fil_{< $\omega,\kappa}(\mathscr{A}_G)$ be the filter of all $X \in \mathscr{U}$ such that $\forall h \in \mathsf{FF}_{<\omega,\kappa}(\mathscr{A}_G)$ there is $h' \in \mathsf{FF}_{<\omega,\kappa}(\mathscr{A}_G)$ such that $h' \supseteq h$ and $\mathscr{A}^{h'} \subseteq X$. Then:

- fil_{< ω,κ}(\mathscr{A}_G) is κ -complete.
- Every $\mathscr{H} \in [\operatorname{fil}_{<\omega,\kappa}(\mathscr{A}_G)]^{\leq \kappa}$ has a pseudo-intersection in $\operatorname{fil}_{<\omega,\kappa}(\mathscr{A}_G)$.
- If $f \in V \cap {}^{\kappa}\kappa$ is strictly increasing, then $\exists a \in \operatorname{fil}_{<\omega,\kappa}(\mathscr{A}_G)$ such that

f(a(i)) < a(i)

for all $i \in \kappa$, where $\{a(i)\}_{i \in \kappa}$ is the increasing enumeration of a.

イロト イポト イラト イラト

Theorem (F., Montoya)

(GCH) Let κ be a measurable cardinal and let \mathscr{U} be a normal measure on κ . The generic maximal independent family \mathscr{A}_G adjoined by $\mathbb{P}_{\mathscr{U}}$ remains maximal after the κ -support product $\mathbb{S}^{\lambda}_{\kappa}$.

Corollary

Let κ be a measurable cardinal. There is a cardinal preserving generic extension in which

$$\mathfrak{a}(\kappa) = \mathfrak{d}(\kappa) = \mathfrak{r}(\kappa) = \mathfrak{i}(\kappa) = \kappa^+ < 2^{\kappa}.$$

Question

Let κ be a regular uncountable cardinal. Is it consistent that

 $\kappa^+ < \mathfrak{i}(\kappa) < 2^{\kappa}?$

Vera Fischer (University of Vienna)

< A >

→ Ξ →

Definition

Let \mathscr{A} be a κ -independent family. A κ -complete filter \mathscr{F} is said to be an κ -diagonalization filter for \mathscr{A} if

$$\forall F \in \mathscr{F} \forall h \in \mathsf{FF}_{<\omega,\kappa}(\mathscr{A}) | F \cap \mathscr{A}^h | = \kappa$$

and \mathcal{F} is maximal with respect to the above property.

Question

- Given a κ-independent family A is there a κ-diagonalization filter for A?
- Is there a large cardinal property which guarantees the existence of such maximal filter?

Definition

Let κ be a regular uncountable cardinal, $\mathscr{A} \subseteq [\kappa]^{\kappa}$ of size at least κ .

- Let $FF_{<\kappa,\kappa}(\mathscr{A}) = \{h : \mathscr{A} \to \{0,1\} : \text{ such that } |dom(h)| < \kappa\}.$
- **②** For each *h* ∈ FF_{<*κ*,*κ*}(*A*) let *A*^{*h*} = ∩{*A*^{*h*(*A*)} : *A* ∈ dom(*h*)} where $A^{h(A)} = A$ if h(A) = 0 and $A^{h(A)} = \kappa \setminus A$ if h(A) = 1.
- 3 \mathscr{A} is said to be strongly- κ -independent if for each $h \in FF_{<\kappa,\kappa}(\mathscr{A})$, \mathscr{A}^h is unbounded.
- (a) \mathscr{A} is maximal strongly- κ -independent family if it is κ -independent, maximal under inclusion.

イロト イポト イラト イラト

Lemma (F., Montoya)

Let κ be a regular infinite cardinal.

- For κ strongly inaccessible, there is a strongly- κ -independent family of cardinality 2^{κ} .
- If *A* is strongly-κ-independent and |*A*| < τ(κ) then *A* is not maximal.
- Suppose $\mathfrak{d}(\kappa)$ is such that for every $\gamma < \mathfrak{d}(\kappa)$, $\gamma^{<\kappa} < \mathfrak{d}(\kappa)$. If \mathscr{A} is strongly- κ -independent and $|\mathscr{A}| < \mathfrak{d}(\kappa)$ then \mathscr{A} is not maximal.

A B > A B >

Image: A math

Corollary

Thus if

 $\mathfrak{i}_{\mathfrak{s}}(\kappa) = \min\{|\mathscr{A}| : \mathscr{A} \text{ maximal strongly-}\kappa\text{-independent family}\}$

is defined, then

•
$$\kappa^+ \leq \mathfrak{i}_{\mathcal{S}}(\kappa) \leq 2^{\kappa};$$

•
$$\mathfrak{r}(\kappa) \leq \mathfrak{i}_{s}(\kappa);$$

• if for every $\gamma < \mathfrak{d}(\kappa), \ \gamma^{<\kappa} < \mathfrak{d}(\kappa)$, then $\mathfrak{d}(\kappa) \leq \mathfrak{i}_{\mathfrak{s}}(\kappa)$.

Vera Fischer (University of Vienna)

ヨトィヨト

Theorem (Kunen, 1983)

- The existence of a maximal strongly-ω₁-independent family implies CH and the existence of a weakly inaccessible cardinal between ω₁ and 2^{ω₁};
- 2 The existence of a measurable cardinal is equiconsistent with the existence of a maximal strongly- ω_1 -independent family.

Thank you for your attention!

Vera Fischer (University of Vienna)

э

★ ∃ >

- V. Fischer, D. C. Montoya *Higher Independence* preprint 2020.
- V. Fischer, D. C. Montoya *Ideals of Independence* 2019.
- V. Fischer, S. Shelah *The spectrum of independence* 2019.
- V. Fischer, S. Shelah *The spectrum of independence can be quite arbitrary* preprint 2020.
- K. Kunen Maximal σ -independent families 1983.
- S. Shelah Con(i < u) 1984.

< ロ > < 同 > < 回 > < 回 >