Luzin's (N) and randomness reflection

Linda Westrick

Penn State University

Midwest Computability Seminar with CTA Online Seminar

Joint with Arno PAULY and YU Liang

December 8, 2020

Luzin's (N)

Let λ denote the Lebesgue measure.

Definition. A function $f:[0,1]\to\mathbb{R}$ has the property *Luzin's (N)* if for all $A\subseteq[0,1]$,

$$\lambda(A) = 0 \implies \lambda(f(A)) = 0$$

Non-example. The Cantor Staircase does not have (N).

A = Cantor middle thirds set

$$= 0$$

) = 1.

Background on Luzin's (N)

Let $f:[0,1]\to\mathbb{R}$ be a continuous function.

- ▶ f has (N) iff f maps measurable sets to measurable sets.
- ▶ (Banach-Zaretsky) For f with bounded variation, f has (N) iff f is absolutely continuous (a.e. differentiable and $\int f' = f$)
- ▶ (Luzin) If f fails (N), there is a perfect null set $P \subseteq [0,1]$ such that $\lambda(f(P)) > 0$.

Pathology

Theorem (Luzin) If a continuous function f fails Luzin's (N), there is a compact witness A.

Thus
$$f$$
 has $(N) \iff$ for all closed A , $[\lambda(A) = 0 \implies \lambda(f(A)) = 0]$. That is, " f has (N) " is Π^1_1 .

Theorem (Holicky, Ponomarev, Zajicek, Zeleny 1998) The set of continuous real-valued functions with Luzin's (N) is Π_1^1 -complete.

Opportunity

Luzin's (N) should be a classical notion which has a pointwise characterization in terms of higher randomness.

TFAE?

- ► Luzin's (N)
- If $\lambda(A) = 0$ then $\lambda(f(A)) = 0$.
- ▶ If x is non-random then f(x) is non-random.
- ▶ If f(x) is random, then x is random.

Question. What notion of random makes the above correct?

Question. (Basis theorems) If a computable f fails to have Luzin's (N), can we always find a witness A that is computationally "simple"?

Outline

- 1. Randomness reflection theorems
- 2. Basis theorems
- 3. Ingredients of Luzin's $(N) \Leftrightarrow \Pi_1^1$ -randomness reflection

Higher randomness

Definition Let r be any oracle. A real y is

- 1. $\Delta_1^1(r)$ -random if y is not in any null $\Delta_1^1(r)$ set.
- 2. Π_1^1 -random if y is not in any null Π_1^1 set.
- 3. r-Kurtz random if y is not in any null $\Pi_1^0(r)$ set.

Let \mathcal{O} denote the canonical Π_1^1 -complete set.

Fact (Sacks). If y is Π_1^1 -random, or $\Delta_1^1(r)$ -random for $r \geq_T \mathcal{O}$, then $y \not\geq_h \mathcal{O}$.

Characterizations of (N)

Let R be any randomness notion (e.g. Martin-Löf, Δ_1^1 , Kurtz, ...)

Definition. We say that a function *f* reflects *R*-randomness if

for all x, if f(x) is R-random, then x is R-random.

Theorem 1 (PWY) For computable $f : [0,1] \to \mathbb{R}$, TFAE:

- 1. f has Luzin's (N)
- 2. f reflects \mathcal{O} -Kurtz randomness
- 3. f reflects $\Delta_1^1(\mathcal{O})$ -randomness
- 4. f reflects Π_1^1 -randomness
- 5. f reflects Δ_1^1 -randomness and $f^{-1}(y)$ is countable a.e. y

Open question Does reflecting Δ_1^1 -randomness imply Luzin's (N)?

Reflecting weaker randomnesses

Definition. We say that a function f reflects R-randomness if for all x, if f(x) is R-random, then x is R-random.

If *R* changes, both hypothesis and conclusion change.

 \implies no direct implications for different R.

Theorem 2 (PWY) None of these imply (N) for computable f:

- 1. Martin-Löf randomness reflection
- W2R-reflection
- 3. 2-randomness reflection

Open question Does W3R-reflection imply Luzin's (N)?

A MLR-reflecting function without (N)

Theorem 2 A computable f can reflect MLR but fail Luzin's (N).

Proof.

- ▶ Reflecting *MLR* means: $x \notin MLR \Rightarrow f(x) \notin MLR$.
- ► Let *U* be the first component of a universal *MLR*-test.
- ▶ Idea: Make f wiggly outside U and piecewise linear inside U.
- ▶ Maintain $\lambda(f_s(I \setminus U_s)) \ge \lambda(I \setminus U_s)$.
- ▶ Find a measure 0 subset $F \subseteq I \setminus U$ with f(F) > 1/2.

thick line - means wiggly

Luzin's (N) and bounded variation

Restricting attention to BV functions f simplifies the picture.

Theorem 3 (PWY) For computable, bounded variation

- $f:[0,1]
 ightarrow \mathbb{R}$, the following are equivalent:
 - 1. f has Luzin's (N)
 - 2. f reflects \emptyset' -Kurtz randomness
 - 3. f reflects weak-2-randomness

Theorem (essentially Bienvenu and Merkle 2009) The following non-implications hold even for strictly increasing functions:

- 1. Luzin's (N) does not imply Martin-Löf randomness reflection
- 2. Kurtz randomness reflection does not imply Luzin's (N)

Outline

- 1. Randomness reflection theorems
- 2. Basis theorems
- 3. Ingredients of Luzin's (N) $\Leftrightarrow \Pi^1_1$ -randomness reflection

Π_1^1 -completeness of Luzin's (N)

Theorem (Holicky, Ponomarev, Zajicek, Zeleny 1998) The set of continuous real-valued functions with Luzin's (N) is Π_1^1 -complete.

Proof sketch. Let D be a fat Cantor set. Let $\phi(x) = \lambda(D \cap [0, x])$.

Basis theorems - closed witness

Recall: If a continuous f fails Luzin's (N), there is a compact witness A.

Proposition If f is computable and fails Luzin's (N), there is an \mathcal{O} -computable compact witness A with $\omega_1^A = \omega_1^{ck}$.

Proof: Gandy basis theorem.

However, this cannot be improved to Δ^1_1 -computable closed A. If it were, "f has (N)" could be written in a Σ^1_1 way as

(for all closed
$$A \in \Delta^1_1$$
) $[\lambda(A) = 0 \Rightarrow \lambda(f(A)) = 0]$

contradicting Π_1^1 -completeness.

HPZZ construction gives specific examples of functions which fail Luzin's (N), but send all null Δ_1^1 -closed sets to null sets.

Basis theorems – Π_2^0 witness

Theorem 2 (PWY) There is a computable function that fails Luzin's (N) while sending $MLR(\emptyset')^C$ to a null set.

Open Question Can a computable function fail Luzin's (N) while sending every null $\Pi_2^0(\emptyset')$ to a null set?

Note: When HPZZ construction functions fail (N), a null Π_2^0 set witnesses the failure.

Outline

- 1. Randomness reflection theorems
- 2. Basis theorems
- 3. Ingredients of Luzin's (N) $\Leftrightarrow \Pi_1^1$ -randomness reflection

Characterizations of (N), revisited

Theorem (PWY) For a computable $f : [0,1] \to \mathbb{R}$, TFAE:

- 1. f has Luzin's (N)
- 2. f reflects O-Kurtz randomness
- 3. f reflects $\Delta_1^1(\mathcal{O})$ -randomness
- 4. f reflects Π_1^1 -randomness
- 5. f reflects Δ_1^1 -randomness and $f^{-1}(y)$ is countable a.e. y

Luzin's (N) and countable fibers

Theorem (Martin 1976) If A is an uncountable $\Delta_1^1(y)$ set and for all $x \in A$, $x \ge_h y$, then for some $x \in A$, $x \ge_h \mathcal{O}^y$.

Corollary

- ▶ If f reflects $\Delta_1^1(\mathcal{O})$ -randomness, then $f^{-1}(y)$ is countable for all $\Delta_1^1(\mathcal{O})$ -random y.
- ▶ If f reflects Π_1^1 -randomness, then $f^{-1}(y)$ is countable for all Π_1^1 -random y.

Proof. Let $A = f^{-1}(y)$. If A were uncountable, by Martin's theorem, there is $x \in A$ with $x \ge_h \mathcal{O}$. But if $x \ge_h \mathcal{O}$, then x is not $\Delta^1_1(\mathcal{O})$ -random or Π^1_1 -random.

Open question If f reflects Δ_1^1 -randomness, is $f^{-1}(y)$ countable for all Δ_1^1 -random y?

Ingredients of main theorem

Theorem (PWY) For a computable $f:[0,1] \to \mathbb{R}$, TFAE:

- 1. f has Luzin's (N)
- 2. f reflects $\Delta_1^1(r)$ -randomness for all r on a cone
- 3. f reflects $\Delta_1^1(r)$ -randomness for some $r \geq_h \mathcal{O}$
- 4. f reflects Π_1^1 -randomness
- 5. f reflects Δ_1^1 -randomness and $f^{-1}(y)$ is countable a.e. y
- (1) \Leftrightarrow (2) as every null $\Sigma_1^1(r)$ set is contained in a null $\Delta_1^1(r)$ set.

Ingredients of main theorem, II

Theorem (PWY) For a computable $f:[0,1] \to \mathbb{R}$, TFAE:

- 1. f has Luzin's (N)
- 2. f reflects $\Delta_1^1(r)$ -randomness for all r on a cone
- 3. f reflects $\Delta_1^1(r)$ -randomness for some $r \geq_h \mathcal{O}$
- 4. f reflects Π_1^1 -randomness
- 5. f reflects Δ_1^1 -randomness and $f^{-1}(y)$ is countable a.e. y

Lemma If y is $\Delta_1^1(r)$ -random with $r \ge_h \mathcal{O}$, and x is Δ_1^1 -random with $x \le_h y$, then x is $\Delta_1^1(r)$ -random.

Sketch that (3),(4) or (5) imply (2). Let $r \geq \mathcal{O}$.

- ▶ Given $\Delta_1^1(r)$ -random y and f(x) = y, want x $\Delta_1^1(r)$ -random.
- ▶ By (3), (4) or (5), x is Δ_1^1 -random.
- ▶ In all cases $f^{-1}(y)$ is countable, thus $x \leq_h y$. Apply Lemma.

References

- ► Pauly, Westrick & Yu. Luzin's (N) and randomness reflection. Accepted J. Symb. Log. Available: arXiv: 2006.07517.
- ▶ Bienvenu & Merkle (2009). Constructive equivalence relations on computable probability measures. Ann. Pure Appl. Logic.
- Holicky, Ponomarev, Zajicek, Zeleny (1998). Structure of the set of continuous functions with Luzin's property (N). Real Anal. Exchange.
- Martin (1976). Proof of a conjecture of Friedman. Proc. Amer. Math. Soc.