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Luzin’s (N)
Let λ denote the Lebesgue measure.

Definition. A function f : [0, 1]→ R has the property Luzin’s (N)
if for all A ⊆ [0, 1],

λ(A) = 0 =⇒ λ(f (A)) = 0

Non-example. The Cantor Staircase does not have (N).

A = Cantor middle thirds set λ(A) = 0 λ(f (A)) = 1.



Background on Luzin’s (N)

Let f : [0, 1]→ R be a continuous function.

I f has (N) iff f maps measurable sets to measurable sets.

I (Banach-Zaretsky) For f with bounded variation, f has (N) iff
f is absolutely continuous (a.e. differentiable and

∫
f ′ = f )

I (Luzin) If f fails (N), there is a perfect null set P ⊆ [0, 1] such
that λ(f (P)) > 0.



Pathology

Theorem (Luzin) If a continuous function f fails Luzin’s (N),
there is a compact witness A.

Thus f has (N) ⇐⇒
for all closed A, [λ(A) = 0 =⇒ λ(f (A)) = 0].

That is, “f has (N)” is Π1
1.

Theorem (Holicky, Ponomarev, Zajicek, Zeleny 1998) The set of
continuous real-valued functions with Luzin’s (N) is Π1

1-complete.



Opportunity

Luzin’s (N) should be a classical notion which has a pointwise
characterization in terms of higher randomness.

TFAE?

I Luzin’s (N)

I If λ(A) = 0 then λ(f (A)) = 0.

I If x is non-random then f (x) is non-random.

I If f (x) is random, then x is random.

Question. What notion of random makes the above correct?

Question. (Basis theorems) If a computable f fails to have Luzin’s
(N), can we always find a witness A that is computationally
“simple”?
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Higher randomness

Definition Let r be any oracle. A real y is

1. ∆1
1(r)-random if y is not in any null ∆1

1(r) set.

2. Π1
1-random if y is not in any null Π1

1 set.

3. r -Kurtz random if y is not in any null Π0
1(r) set.

Let O denote the canonical Π1
1-complete set.

Fact (Sacks). If y is Π1
1-random, or ∆1

1(r)-random for r ≥T O,
then y 6≥h O.



Characterizations of (N)

Let R be any randomness notion (e.g. Martin-Löf, ∆1
1, Kurtz, ...)

Definition. We say that a function f reflects R-randomness if

for all x , if f (x) is R-random, then x is R-random.

Theorem 1 (PWY) For computable f : [0, 1]→ R, TFAE:

1. f has Luzin’s (N)

2. f reflects O-Kurtz randomness

3. f reflects ∆1
1(O)-randomness

4. f reflects Π1
1-randomness

5. f reflects ∆1
1-randomness and f −1(y) is countable a.e. y

Open question Does reflecting ∆1
1-randomness imply Luzin’s (N)?



Reflecting weaker randomnesses

Definition. We say that a function f reflects R-randomness if

for all x , if f (x) is R-random, then x is R-random.

If R changes, both hypothesis and conclusion change.
=⇒ no direct implications for different R.

Theorem 2 (PWY) None of these imply (N) for computable f :

1. Martin-Löf randomness reflection

2. W2R-reflection

3. 2-randomness reflection

Open question Does W3R-reflection imply Luzin’s (N)?



A MLR-reflecting function without (N)

Theorem 2 A computable f can reflect MLR but fail Luzin’s (N).

Proof.

I Reflecting MLR means: x 6∈ MLR ⇒ f (x) 6∈ MLR.

I Let U be the first component of a universal MLR-test.

I Idea: Make f wiggly outside U and piecewise linear inside U.

I Maintain λ(fs(I \ Us)) ≥ λ(I \ Us).

I Find a measure 0 subset F ⊆ I \ U with f (F ) > 1/2.

U
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Luzin’s (N) and bounded variation

Restricting attention to BV functions f simplifies the picture.

Theorem 3 (PWY) For computable, bounded variation
f : [0, 1]→ R, the following are equivalent:

1. f has Luzin’s (N)

2. f reflects ∅′-Kurtz randomness

3. f reflects weak-2-randomness

Theorem (essentially Bienvenu and Merkle 2009) The following
non-implications hold even for strictly increasing functions:

1. Luzin’s (N) does not imply Martin-Löf randomness reflection

2. Kurtz randomness reflection does not imply Luzin’s (N)
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Π1
1-completeness of Luzin’s (N)

Theorem (Holicky, Ponomarev, Zajicek, Zeleny 1998) The set of
continuous real-valued functions with Luzin’s (N) is Π1

1-complete.

Proof sketch. Let D be a fat Cantor set. Let φ(x) = λ(D ∩ [0, x ]).



Basis theorems – closed witness

Recall: If a continuous f fails Luzin’s (N), there is a compact
witness A.

Proposition If f is computable and fails Luzin’s (N), there is an
O-computable compact witness A with ωA

1 = ωck
1 .

Proof: Gandy basis theorem.

However, this cannot be improved to ∆1
1-computable closed A. If

it were, “f has (N)” could be written in a Σ1
1 way as

(for all closed A ∈ ∆1
1) [λ(A) = 0⇒ λ(f (A)) = 0]

contradicting Π1
1-completeness.

HPZZ construction gives specific examples of functions which fail
Luzin’s (N), but send all null ∆1

1-closed sets to null sets.



Basis theorems – Π0
2 witness

Theorem 2 (PWY) There is a computable function that fails
Luzin’s (N) while sending MLR(∅′)C to a null set.

Open Question Can a computable function fail Luzin’s (N) while
sending every null Π0

2(∅′) to a null set?

Note: When HPZZ construction functions fail (N), a null Π0
2 set

witnesses the failure.
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Characterizations of (N), revisited

Theorem (PWY) For a computable f : [0, 1]→ R, TFAE:

1. f has Luzin’s (N)

2. f reflects O-Kurtz randomness

3. f reflects ∆1
1(O)-randomness

4. f reflects Π1
1-randomness

5. f reflects ∆1
1-randomness and f −1(y) is countable a.e. y



Luzin’s (N) and countable fibers

Theorem (Martin 1976) If A is an uncountable ∆1
1(y) set and for

all x ∈ A, x ≥h y , then for some x ∈ A, x ≥h Oy .

Corollary

I If f reflects ∆1
1(O)-randomness, then f −1(y) is countable for

all ∆1
1(O)-random y .

I If f reflects Π1
1-randomness, then f −1(y) is countable for

all Π1
1-random y .

Proof. Let A = f −1(y). If A were uncountable, by Martin’s
theorem, there is x ∈ A with x ≥h O. But if x ≥h O, then x is not
∆1

1(O)-random or Π1
1-random.

Open question If f reflects ∆1
1-randomness, is f −1(y) countable

for all ∆1
1-random y?



Ingredients of main theorem

Theorem (PWY) For a computable f : [0, 1]→ R, TFAE:

1. f has Luzin’s (N)

2. f reflects ∆1
1(r)-randomness for all r on a cone

3. f reflects ∆1
1(r)-randomness for some r ≥h O

4. f reflects Π1
1-randomness

5. f reflects ∆1
1-randomness and f −1(y) is countable a.e. y

(1) ⇔ (2) as every null Σ1
1(r) set is contained in a null ∆1

1(r) set.



Ingredients of main theorem, II

Theorem (PWY) For a computable f : [0, 1]→ R, TFAE:

1. f has Luzin’s (N)

2. f reflects ∆1
1(r)-randomness for all r on a cone

3. f reflects ∆1
1(r)-randomness for some r ≥h O

4. f reflects Π1
1-randomness

5. f reflects ∆1
1-randomness and f −1(y) is countable a.e. y

Lemma If y is ∆1
1(r)-random with r ≥h O, and x is ∆1

1-random
with x ≤h y , then x is ∆1

1(r)-random.

Sketch that (3),(4) or (5) imply (2). Let r ≥ O.

I Given ∆1
1(r)-random y and f (x) = y , want x ∆1

1(r)-random.

I By (3), (4) or (5), x is ∆1
1-random.

I In all cases f −1(y) is countable, thus x ≤h y . Apply Lemma.
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