
Synthetic mathematics
with an excursion into
computability theory

Andrej Bauer
University of Ljubljana

University of Wisconsin Logic seminar
February 8, 2021

1 / 26

1. Thank you for the invitation. I am delighted to have the opportunity to
speak at your seminar. Hopefully one day I can also visit.
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1. Today I would like to speak about synthetic mathematics, and specifically
about synthetic computability.

2. Let us begin by explaining what is meant by “synthetic”. It is often said
that Euclid’s geometry is synthetic whereas Descartes’s geometry is
analytic.



Synthetic:
I Basic objects are taken as primitive.
I Their properties & relations are axiomatized.
I We work within the axiomatic system.

Analytic:
I Basic objects are constructed from other objects.
I Their properties & relations are deduced.
I We work in a wider mathematical environment.
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1. The synthetic approach takes the basic objects as primitive, and
axiomatizes their properties and relations. All reasoning relies just on the
axioms.

2. Example: Euclid’s geometry takes basic notions (point and lines) as
primitive and relies on the axiomatic method. (NB: lines are not sets of
points!)

3. In the analytic approach the basic objects are built from other objects.
Their properties and relations are deduced.

4. Example: Descartes’s geometry employs a coordinate system,
represents points as elements of R2, and lines as certain subsets of R2.

5. Each approach has its advantages. The synthetic one often exposes the
essence of an argument, while the analytic one provides a wider set of
methods by which we may attack a problem.



Synthetic differential geometry:

“All maps are smooth!”

Synthetic topology:

“All maps are continuous!”

Synthetic computability:

“All maps are computable!”
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1. Euclid’s geometry is about a single structure – the Euclidean plane. We
seek to develop the synthetic method for an entire branch of
mathematics, such as differential geometry, or topology, or
computability theory.

2. In fact these have all been developed, as well as others. We cannot give
a proper historical account here, but suffice let me mention some names.

3. Synthetic differential geometry is probably the oldest, and has been
developed by Eduardo Dobuc, Bill Lawvere, and Anders Kock. In it all
maps are smooth and nilpotent infinitesimals exist. Robinson’s
infinitesimal analysis is similar, but does not have nilpotent
infinitesimals. It also can be viewed as a kind of synthetic mathematics.

4. Synthetic topology has been studied by Martin Escardó, Paul Taylor,
Davorin Lešnik, and myself. It builds on the work done in the 1980’s on
synthetic domain theory. The idea here is that “every set has an
intrinsic topology” and “all maps are continuous”.

5. I shall speak about synthetic computability in detail.



Synthetic Analytic

Theory
interpretation

//Model

HOL
internal language

// Topos
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1. As logicians, we may formulate the situation in familiar terms.
“Synthetic” is “theory”, “analytic” the “model”, and they are related by
an interpretation. We shall adopt this view.

2. There are several options for what “theory” and “model” mean here.
3. For the geometry of the plane we could take a first-order theory and a

first-order structure.
4. To capture an entire branch of mathematics, we need a sufficiently

complex notion of model, as well as an expressive language.
Higher-order logic (often intuitionistic) and toposes fit the bill.

5. If you are not familiar with these, do not despair. The differences
between set theory and toposes are largely superficial. Also informal
higher-order logic and set theory are quite similar, and I shall explicitly
describe the model. If anyone is interested in the technical details, we
can discuss them too.
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IHOL
realizability

// Effective topos

The method:
1. Take a classic theorem in computability theory.
2. Rephrase it as a fact about the effective topos.
3. Find a statement whose interpretation is the fact.
4. Abstract the statement to expose its essence.
5. Give a synthetic proof.
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1. Our model of choice is the effective topos, whose internal language is
intuitionistic higher-order logic, and the interpretation is Kleene’s
realizability.

2. We shall take a closer look at these ingredients, but let us first explain
the general method by which synthetic results are obtained.

3. The first three steps are best done in the privacy of one’s notebook, as
they are mostly just technique. The last two steps are most interesting,
because they show how synthetic mathematics works.



The effective topos
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1. The effective topos was discovered by Martin Hyland in the 1980’s.
2. It is a bit complicated to describe. Luckily, there is a subcategory of it,

which is quite intuitive, easier to describe, and sufficient for our
purposes. So let us do that instead.



Assemblies

Definition
An assembly A = (|A|,
A) is a set |A|with a realizability relation

A ⊆ N× |A| such that ∀x ∈ A .∃n ∈ N .n 
A x.

When n 
A x we say that n realizes x. Think of n as the Gödel
code of x.

Definition
An assembly map f : A→ B is a function f : |A| → |B| for which
there exists k ∈ N such that

∀x ∈ |A| . ∀n ∈ N .n 
A x⇒ ϕk(n) 
B f (x).

Above ϕk is the k-th partial computable map. We say that ϕk
tracks or realizes f .
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1. An assembly is quite literally the formal expression of the idea that
mathematical objects may be coded with numbers.

2. Note that every element must have at least one realizers, and may have
several.

3. We also allow the same number to code several elements. While this
sounds unusual, it is quite useful.

4. The appropriate notion of morphism between assemblies is that of a
map that is tracked by a partial computable map.



Examples of assemblies

1. Natural numbers: N = (N,
N)
where k 
N n ⇐⇒ k = n.

2. Computable maps: NN = (R,
N)
whereR is the set of computable maps N→ N and
n 
NN f ⇐⇒ f = ϕn.

3. Computably enumerable sets: E = (CE,
E)
where CE is the set of c.e. sets and
n 
E S ⇐⇒ S = {k ∈ N | ϕn(k)↓}.

4. Classical sets: ∇X = (X,
∇X)
where X is any set and
n 
∇X x for all n ∈ N and x ∈ X.

9 / 26

1. The well-known objects in computability theory form assemblies.
2. Any set X may be equipped with the trivial computability structure in

which every number realizes every element. We get a full and faithful
functor ∇ : Set → Asm of sets into assemblies. The assembly ∇X is
used to non-uniformly parameterize with X a theorem or a construction.
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1. The well-known objects in computability theory form assemblies.
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which every number realizes every element. We get a full and faithful
functor ∇ : Set → Asm of sets into assemblies. The assembly ∇X is
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Two-element assemblies

1. The boolean truth values: 2 = ({⊥,>},
2)
where 0 
2 ⊥ and 1 
2 >.

2. The semidecidable truth values: S = ({⊥,>},
S)
where n 
S ⊥ ⇐⇒ n /∈ K and n 
2 > ⇐⇒ n ∈ K.
(K = {n ∈ N | ϕn(n)↓} is the Halting set.)

3. The classical truth values: ∇2 = ({⊥,>},
∇2)
where n 
∇2 b for all n ∈ N and b ∈ {⊥,>}.

Decision procedures/subsets:
1. Decision procedure/subset: A→ 2.
2. Semi-decision procedure/subset: A→ S.
3. Non-computational decision/subset: A→ ∇2.
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1. Just like there are several topologies on a two-element set, there are
many assembly structures on it. In fact, many more than there are
topologies.

2. The two-element assemblies encode various notions of decision
procedures.
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Realizability interpretation of logic

n 
 > always
n 
 ⊥ never
n 
 a =A b if a, b ∈ |A| and a = b and n 
A a,

〈m,n〉 
 φ ∧ ψ if m 
 φ and n 
 ψ,
〈0,n〉 
 φ ∨ ψ if m 
 φ,
〈1,n〉 
 φ ∨ ψ if m 
 ψ,

n 
 φ⇒ ψ if k 
 φ implies ϕn(k) 
 ψ,
n 
 ∀x ∈ A . φ(x) if a ∈ |A| and k 
A a implies

ϕn(k) 
 φ(a),

〈m,n〉 
 ∃x ∈ A . φ(x) if there is a ∈ |A| such that
m 
A a and n 
 φ(a).
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1. The interpretation of intuitionistic logic in the effective topos is Kleene’s
realizability relation, sketched out here.

2. It is essentially the computability-theoretic expression of the
Brouwer-Heyting-Kolmogorov reading of the meaning of constructive
logic. Rather than explaining when a statement is true, we explain
which numbers realize it. The truth value of a statement is then the set
of numbers that realize it.

3. If a statement is provable in intuitionistic logic then it has a realizer (but
not vice versa).

4. The realizability interpretation converts proofs carried out in
intuitionistic logic to computations.

5. For example, a proof of ∀x ∈ A . φ(x) ∨ ψ(x) translates to a decision
procedure which, given n 
A x outputs 〈0, k〉 or 〈1,m〉 from which me
may discern which of the two disjuncts holds, and why.

6. The upshot is that in the synthetic world we never have to explicitly
mention any computations, because the realizability interpretation
reconstructs them from proofs.



Two-element sets – synthetically

I Every topos has the object of truth values Ω.
I The power set of A is PA = ΩA.
I Decidable truth values:

2 = {p ∈ Ω | p ∨ ¬p}.

I The semi-decidable truth values:

S = {p ∈ Ω | ∃f : 2N . (p ⇐⇒ ∃n ∈ N . f (n))}.

I The classical truth values:

∇2 = {p ∈ Ω | ¬¬p⇒ p}.
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1. Here is our first exercise: construct the various two-element assemblies
considered earlier synthetically. We shall refer to the objects of the
effective topos as sets to keep things simple.

2. Every topos has a subobject classifier, or the set of truth values. In the
effective topos, it is not an assembly, we shall just take it for granted.



Theorem (Lawvere)

If e : A� BA is surjective then B has the fixed point property: for
every f : B→ B there is x0 ∈ B such that f (x0) = x0.

Proof.
Given f : B→ B, define g(y) = f (e(y)(y)). Because e is surjective there
is x ∈ A such that e(x) = g. Then e(x)(x) = f (e(x)(x)), so x0 = e(x)(x) is
a fixed point of f .

Corollary

There is no surjection e : N� NN.

Proof.
The successor map does not have a fixed point.

13 / 26

1. The realizability interpretation converts constructive proofs to
computations.

2. Thus, some synthetic computability theorems are “free” in the sense
that they require no special axioms.

3. The realizability translation of the corollary is: there is no computable
enumeration of computable total maps.
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1. The realizability interpretation converts constructive proofs to
computations.

2. Thus, some synthetic computability theorems are “free” in the sense
that they require no special axioms.

3. The realizability translation of the corollary is: there is no computable
enumeration of computable total maps.



Proposition (Rice’s theorem)

If A has the fixed point property then every map A→ 2 is constant.

Proof.
Given f : A→ 2 and any x, y ∈ A we show that f (x) = f (y). Define
g : A→ A by

g(z) =

{
x if f (z) = f (y),
y otherwise.

There is u ∈ A such that u = g(u). If f (u) = f (y) then u = g(u) = x
hence f (x) = f (u) = f (y). If f (u) 6= f (y) then u = g(u) = y and so
f (u) = f (y), a contradiction, hence again f (x) = f (y).
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Here is another “free theorem”, namely Rice’s theorem.This is perhaps a bit
difficult to relate to the traditional Rice’s theorem. We shall do so later. For
now, observe that we have extracted the essence of Rice’s theorem: the fixed-
point property.



Enumerable & finite sets

I A is finite if there exist n ∈ N and a surjection

e : {1, . . . ,n}� A,

called a listing of A. An element may be listed more than
once.

I A is enumerable (countable) if there exists a surjection

e : N� 1 + A,

called an enumeration of A.
For inhabited A we may take e : N� A.

I A is infinite if there exists an injective i : N� A.
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1. Recall the following basic notions.
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Multi-valued maps

Definition
A multi-valued map f : A⇒ B is a map f : A→ PB such that
∀x ∈ A . ∃y ∈ B . y ∈ f (x).

The multi-valued maps f : A⇒ B are in correspondence with
total relations R ⊆ A× B.
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1. It is convenient to work with multi-valued maps, i.e., those that can
return many results.



Axiom of Choice

I Axiom of Choice is not valid in the effective topos:

Every f : A⇒ B has a choice function g : A→ B such that
g(x) ∈ f (x) for all x ∈ A.

I Number Choice is valid:
Every f : N⇒ B has a choice function g : N→ B.

I Dependent Choice is valid:

Given x ∈ A and h : A ⇒ A, there exists g : N → A such
that g(0) = x and g(n + 1) ∈ h(g(n)) for all n ∈ N.

This is a form of simple recursion for multi-valued functions.
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1. The general axiom of choice is invalid in the effective topos, but
number choice and dependent choice are realized.
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1. The general axiom of choice is invalid in the effective topos, but
number choice and dependent choice are realized.



Theorem (Recursion Theorem)

If there is a surjection e : N→ AN then every multi-valued map
f : A⇒ A has a fixed point, which is an x ∈ A such that x ∈ f (x).

Proof.
For every n ∈ N there is x ∈ f (e(n)(n)), hence by Countable Choice
there is a map g : N→ A such that g(n) ∈ f (e(n)(n)) for all n ∈ N.
There is k ∈ N such that e(k) = g, and so
e(k)(k) = g(k) ∈ f (e(k)(k)).
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1. The recursion theorem is a fixed-point principle for multi-valued maps.
2. Note that we still need on special axioms to prove the theorem, apart

from number choice.
3. We will need extra axioms to find interesting instances of the theorem.

Classically there are none.



Axiom of Enumerability

For S ∈ PN, let enumerable(S) be the the predicate

∃f ∈ NN . ∀n ∈ N . (n ∈ S ⇐⇒ ∃k ∈ N . f (k) = n + 1)

Define the set of all enumerable subsets of N:

E = {S ∈ PN | enumerable(S)}.

Axiom (Enumerability)

There are enumerably many enumerable sets of numbers.

Let W : N� E be an enumeration.
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1. The central axiom of synthetic computability sounds crazy from a
classical viewpoint.

2. However, it is valid in the effective topos. It states that there exists a
computable enumeration of c.e. sets.



First consequences

Proposition

The enumerable and semi-decidable subsets of N coincide: E ∼= SN.

(We leave the proof as exercise. It uses Number Choice.)

Proposition

S and E have the fixed-point property.

Proof.
By Lawvere, W : N� E = SN ∼= SN×N ∼= EN.
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The Law of Excluded Middle Fails

The Law of Excluded Middle says 2 = Ω.

Corollary

The Law of Excluded Middle is false.

Proof.
Among the sets 2 ⊆ S ⊆ Ω only the middle one has the
fixed-point property, so 2 6= S 6= Ω.
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Post’s theorem

Axiom (Markov’s principle)

I Traditional:
If a binary sequence is not constantly 0 then it contains a 1.

I Synthetic: S ⊆ ∇2.

Theorem (Post)

I Traditional:
A ⊆ N is decidable if A and N \ A are semidecidable.

I Synthetic: 2 = {p ∈ Ω | p ∈ S ∧ ¬p ∈ S}.
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Many-to-one reducibility

Definition
A many-to-one reduction from S ⊆ N to T ⊆ N is a map
r : N→ N such that S = {n ∈ N | r(n) ∈ T} = r−1(T).

Definition
A many-to-one reduction from S ⊆ A to T ⊆ B is a map r : A→ B
such that S = r−1(T).

Proposition

K = {〈m,n〉 | m ∈Wn} is many-to-one complete for E .

Proof.
If S ∈ E then S = Wn for some n, hence for all m ∈ N,
m ∈ S ⇐⇒ m ∈Wn ⇐⇒ 〈m,n〉 ∈ K.
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Dcpo’s and ω-cpos

A poset (P,≤) is:
I chain-complete (ω-cpo) if every chain (increasing sequence)

in P has a supremum.
I directed-complete (dcpo) if every directed subset of P has a

supremum.
A base for (P,≤) is an enumerable subset B ⊆ P with decidable
equality, such that:

1. in ω-cpos: every element is the supremum of a chain in B.
2. in dcpos: every element is the supremum of a directed

subset of B.
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Partial oracles: O = {(S0,S1) ∈ PN× PN
∣∣ S0 ∩ S1 = ∅}.

Plotkin’s domain: Tω = {(S0,S1) ∈ E × E
∣∣ S1 ∩ S1 = ∅}.

Both are ordered by component-wise ⊆.

Observations:
I Tω ⊆ O.
I O is a dcpo, Tω is an ω-cpo.
I Common base for both: disjoint finite subsets.
I Total oracles: maxO ∼= (∇2)N.
I maxTω ∼= 2N.

Theorem
Every f : Tω → Tω is preserves suprema of chains.
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Turing reducibility

Definition
A Turing reduction is map r : O→ O which factors through Tω:

O r // O

Tω //

OO

Tω

OO

Say that S ∈ maxO is is Turing-reducible to T ∈ maxO if there is
a reduction r : O→ O such that S = r(T).

Exercise: give a synthetic proof of Friedberg-Mučnik theorem.
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