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Borel normal numbers

Let b be an integer greater than or equal to 2.

A real number is normal to base b if in its base-b expansion every block
of digits occurs with the same limiting frequency as every other block of
the same length.

Couterxamples:
0.010010001000001 . . .

0.0101010101010101 . . .

In 1909 Borel gave this definition, proved that almost all real numbers
are nomal to all integer bases, and he asked for an example.
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Borel’s question

All Martin-Löf random reals are normal to every base, in particular
Ω-numbers.

Constructions

Lebesgue 1909, Sierpinski 1916, Champernowne 1933, Turing 1937,
Copeland and Erdős 1946, Davenport and Erdős 1952, W. Schmidt 1960,
M. B. Levin 1970, Stoneham 1973, M. B. Levin 1999, . . .

Borel’s question is essentially open.
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Champernowne’s example

Theorem (Champernowne 1933)

0.1234567891011121314151617181920212223 . . . is normal to base 10.

Normal numbers and perfect necklaces 4 / 26 Verónica Becher



Normal numbers and perfect necklaces 5 / 26 Verónica Becher



Normal numbers and perfect necklaces 6 / 26 Verónica Becher



Champernowne’s proof

Instead, the concatenation of all blocks of n symbols in lexicographic order,

0123456789︸ ︷︷ ︸
megablock 1

00 01 . . . 98 99︸ ︷︷ ︸
megablock 2

000 001 . . . 998 999︸ ︷︷ ︸
megablock 3

. . .

Champernowne’s proof counts:

I each digit

I each block of two digits

. . .

I each block of n digits

Difficulties:

I overlapping blocks

000 001 002 003 . . . 990 991 992 993 994 995 996 997 998 999

Inside a megablock for length n Champernowne just counts inside blocks
and bounds the number of occurrences in between blocks.

I count up to an arbitrary position within a megablock. �

Normal numbers and perfect necklaces 7 / 26 Verónica Becher



Our observation

For simplicity consider the alphabet {0, 1}.
In the megablock n viewed circularly, each block of length n occurs exactly
n times at different positions modulo n.

position 12 34 56 78

00 01 10 11
00 01 10 11 00 occurs twice, at positions different modulo 2

00 01 10 11
00 01 10 11 01 occurs twice, at positions different modulo 2
00 01 10 11
00 01 10 11 10 occurs twice, at positions different modulo 2
00 01 10 11
00 01 10 11 11 occurs twice, at positions different modulo 2
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Neither Barbier nor Champernowne noticed this!

In the megablock n viewed circularly, each block of length n occurs exactly
n times at different positions modulo n.

000 001 010 011 100 101 110 111 000 occurs three times,
000 001 010 011 100 101 110 111 at different positions modulo 3
000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111 001 occurs three times
000 001 010 011 100 101 110 111 at different postions modulo 3
000 001 010 011 100 101 110 111
. . .

However, not every permutation of the blocks of length n has the property:

00 10 11 01
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Perfect necklaces

Definition (Alvarez, Becher, Ferrari and Yuhjtman 2016)

A necklace over a b-symbol alphabet is (n, k)-perfect if each block of
length n occurs k times, at different position modulo k for any
convention of the starting point.

De Bruijn sequences are exactly the (n, 1)-perfect sequences.

The (n, k)-perfect necklaces have length kbn.
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Megablocks are perfect necklaces

Identify the blocks of length n over a b-symbol alphabet with the set of
non-negative integers modulo bn according to representation in base b.

Theorem (Alvarez, Becher, Ferrari and Yuhjtman 2016)

Let r coprime with b. The concatenation of blocks corresponding to the
arithmetic sequence 0, r, 2r, ..., (bn − 1)r yields an (n, n)-perfect necklace.

With r = 1 we obtain the lexicographically ordered sequence, this is the
magablock for length n.
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Megablocks for length n are perfect necklaces

A bijection σ : {0, ..b− 1}n → {0, ..b− 1}n is a cycle if
{σj(w) : j = 0, ..., bn − 1} is the set of all blocks of length n.

Lemma
Let σ be a cycle over blocks of length n and let v be one block.
The necklace [σ0(v)σ1(v) . . . σb

n−1(v)] is (n, n)-perfect if and only if
for every ` = 0, 1, . . . n− 1 for every block x of length ` and
for every block y of length n− `, there is a unique block w of length n
such that w(n− ` . . . n− 1) = x and (σ(w))(0 . . . n− `− 1) = y.

For every length-n block splitted in two parts, there is exactly one matching in

the cycle (a tail of a block and the head of next block).
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Astute graphs

Fix b-symbol alphabet. The astute graph Gb,n,k is directed, with kbn vertices.

The set if vertices is {0, ..b− 1}n × {0, .., .k − 1}.
An edge (w,m)→ (w′,m′) if w(2, , n) = w′(1..n− 1) and (m+ 1) mod k = m′

This is G2,2,2
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Astute graphs

Observation

Gb,n,1 is the de Bruijn graph of blocks of length n over b-symbols.

Observation

Gb,n,k is Eulerian because it is strongly regular and strongly connected.
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Eulerian cycles in astute graphs

Each Eulerian cycle in Gb,n−1,k gives one (n, k)-perfect necklace.

Each (n, k)-perfect necklace can come from many Eulerian cycles in Gb,n−1,k

Theorem (Alvarez, Becher, Ferrari and Yuhjtman 2016)

The number of (n, k)-perfect necklaces over a b-symbol alphabet is

1

k

∑
db,k|j|k

e(j)ϕ(k/j)

where

I db,k =
∏
pαi
i , such that {pi} is the set of primes that divide both

b and k, and αi is the exponent of pi in the factorization of k,

I e(j) = (b!)jb
n−1

b−n is the number of Eulerian cycles in Gb,n−1,j
I ϕ is Euler’s totient function
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Normal sequences as sequences of Eulerian cycles

Theorem (proved first by Ugalde 2000 for de Bruijn)

The concatenation of (n, k)-perfect necklaces over a b-symbol alphabet, for
increasing (n, k) –at most arithmetically– is normal to the b-symbol alphabet.
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Proof of Theorem

A number is normal to base b if in its base-b expansion every block of digits
occurs with the same limiting frequency as every other block of the same length.

Instead, an equivalent formulation of normality but simpler to test:

Lemma (Piatetski-Shapiro 1951)

A sequence a1a2a3 . . . is normal to a b-symbol alphabet if and only if there is
positive constant C such that for every bock w,

lim sup
n→∞

number of occurrences of w in a1 . . . an
n

< C b−|u|.

To prove that the sequence of megablocks is normal the count at an anbritrary
position is bounded by considering the count at the end of the megablock.

�
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The concatenation of (n, n)-perfect necklaces, n linearly increasing, is
normal. Applying the same modification that Champernowne did we also
obtain his result.

Corollary

Champernowne’s sequence 0.12345678910112 . . . is normal to base 10.

End of the first part of the talk
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Speed of convergence to normality

I A real x is normal to base b if the fractional parts of x, bx, b2x, . . ., that is
(bnx mod 1)n≥0, is uniformly distributed in the unit interval, Wall 1949.

I A sequence (xn)n≥1 is uniformly distributed in the unit interval if

DN ((xn)n≥1) = sup
[α,β)

∣∣∣∣#{n ≤ N : xn ∈ [α, β)}
N

− γ
∣∣∣∣ goes to 0 as N to ∞.

I Schmidt 1972 proved that there is constant C such that for every
(xn)n≥1 there are infinite Ns, DN ((xn)n≥1) > C logN

N
.

This is optimal Van de Corput sequence has exactly this discrepancy.

I It is still unknown whether the optimal order of discrepancy can be
achieved by (bnx mod 1)n≥0 for some real x, Korobov 1956.

I The lowest discrepancy known for (bnx mod 1)n≥0 is O((logN)2/N) for
a real x constructed by M. Levin 1999 using the Pascal triangle modulo 2.
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Nested perfect necklaces

Definition (Becher and Carton 2019)

A sequence over a b-symbol alphabet is a nested (n, k)-perfect necklace if it is
(n, k)-perfect and, in case n > 1, it is the concatenation of b nested (n− 1, k)-
perfect necklaces.

For example, for alphabet {0, 1}, the following is a nested (2, 2)-perfect necklace

0011 0110

The lexicographic order yields a perfect necklace but not nested,

0001︸ ︷︷ ︸
not perfect

1011︸ ︷︷ ︸
not perfect

Nested (n, k)-perfect necklaces are pointed, which means an initial position
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Nested perfect necklaces

These are nested (2, 4)-perfect necklaces:

00001111 01011010

00111100 01101001

00011110 01001011

00101101 01111000

The concatenation of the first two is a nested (3, 4)-perfect necklace.
The concatenation of the last two is a nested (3, 4)-perfect necklace.
The concatenation of all of them is a nested (4, 4)-perfect necklace.
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Nested perfect necklaces

Observation
Assume a b-symbol alphabet. For x a nested (n, n)-perfect necklace,

• Since x is (n, n)-perfect, each block of length n occurs n times in x,
at different positions modulo n.

• Since x is nested, for every i = 1, . . . n, x is the concatenation of bn−i nested
(i, n)-perfect necklaces. So, in the prefix of x of length cnbi each block of
length i occurs cn± ε times with ε ≤ 1 (c± ε times at positions with the same
congruence modulo n).
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Levin’s constant and nested perfect necklaces

Theorem (Becher and Carton 2019)

The binary expansion of the number x defined by Levin 1999
using the Pascal triangle matrix modulo 2 is the concatenation of nested
(2d, 2d)-perfect necklaces for d = 0, 1, 2, . . ..

Theorem (Becher and Carton 2019)

For d = 0, 1, 2, . . . there are 22
d−1 binary nested (2d, 2d)-perfect

necklaces obtained by column rotations of the Pascal triangle matrix
modulo 2.
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Nested perfect necklaces

Lemma
Consider the concatenation of a nested (n, n)-perfect necklace and a nested
(2n, 2n)-perfect necklace. In any segment of length nbn each block of length n
occurs n± ε times at different positions modulo n, with ε ≤ 2.

Leading idea with b = 2:
A nested (2n, 2n)-perfect necklace is equal to
2 nested (2n− 1, 2n)-perfect necklaces are equal to
22 nested (2n− 2, 2n)-perfect necklaces are equal to
. . .
2n nested (n, 2n)-perfect necklaces are equal to
2n+1 nested (n− 1, 2n)-perfect necklaces.

Each nested (n− 1, 2n)-perfect necklace has length 2n2n−1 = n2n, and every

block of length (n− 1) occurs 2n times, necessarily half followed by 0, the

other half followed by 1. Thus, in a nested (n− 1, 2n)-perfect necklace every

block of length n occurs n times. �
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Nested perfect necklaces and low discrepancy

Theorem (Becher and Carton 2019)

Let b be a prime number. Every number x whose base-b expansion is the
concatenation of nested (2d, 2d)-perfect necklaces for d = 0, 1, 2 . . .
satifies DN ((bnx mod 1)n≥0) is O((logN)2/N).

We could not prove that it holds for arbitrary integer bases.
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Open problems

I Give a graph interpretation to nested perfect necklaces

I Study perfect necklaces in higher dimensions

I Is there a Martin-Löf random real x such that for every N ,
DN ((2nx mod 1)n≥1) is O((logN)2/N)?
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