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Solving polynomial equations
One of the most fundamental problems in algebra is to solve systems of polynomial
equations. This example involves a robot arm:

a = `3(cd − st) + `2c
b = `4(ct + ds) + `2s
0 = c2 + s2 − 1
0 = d2 + t2 − 1

Naive definition: The complexity of a system of polynomial equations is the amount of
time it would take a computer to determine the solutions of the system.

Question
Can we better understand the complexity of systems of polynomial equations?



Hilbert’s Landmark Theorems (1890s)
In a fixed number of variables, complexity is always bounded in various senses.

Throughout: S = C[x1, . . . , xn] is the ring of polynomials.

Hilbert Basis Theorem: S is noetherian (i.e. every ideal in S is finitely generated).
Hilbert Syzygy Theorem: every S-module has a free resolution (I’ll discuss this in a
moment. . . ) of length ≤ n.

Question
Are there interesting analogues of these results as n→∞?

Question
How complicated can r polynomials f1, . . . , fr of degree ≤ d become as n→∞?
E.g: How complicated can 4 cubic polynomials in 100,000 variables be?



Cartoon view of complexity
Question
How does complexity of polynomials grow as the number of variables increases?

Expectation: things should get MUCH MUCH more complicated.

Complexity

Number of variables

Details: as n→∞, we fix the number of polynomials that we are considering, and the
degrees of those polynomials. (We also need a more precise notion of “complexity”.)



Measuring Complexity via Syzygies

Definition
A syzygy is a relation among the columns of a matrix.

Start with the matrix [x2, xy , y2]. We have a relation:

y · [x2]− x · [xy ] + 0 · [y2] = [0]

Minimal syzygies of [x2, xy , y2]←→ the columns of

 y 0
−x y
0 −x


Key point: Taking syzygies turns a matrix M1 into an new matrix M2:

M1 = [x2, xy , y2] yields M2 =

 y 0
−x y
0 −x





Projective Dimension
Taking syzygies turns a matrix M1 into a new matrix M2. Iterating yields a free resolution:

F0 F1
M1oo F2

M2oo F3
M3oo · · ·oo

Metaphor: Free resolutions are like Taylor series; both express a potentially complicated
object (a module or a function) in terms of simpler objects (free modules or polynomials).

Definition
For a set of polynomials f1, . . . , fr , we define pdim(f1, . . . , fr ) as the minimal p such that
there is a free resolution of the form:

S1 Sr[f1,f2,···fr ]oo F2
M2oo · · ·M3oo Fp

Mpoo 0oo .

Theorem (Hilbert Syzygy Theorem, 1890)
For any S-module M, pdim(M) ≤ n.

Key point: pdim measures the complexity of polynomials (in a meaningful way).



What happens to Hilbert’s Theorems as n→∞?

At first pass, nothing good seems to happen! Over C[x1, x2, . . . ]:
Basis Theorem fails: Some ideals require infinitely many generators.
Syzygy Theorem fails: Ideals can have arbitrarily large pdim.

At first pass: no analogous bounds on complexity as n→∞.

But what if we make the question more specific:

Question
Let f1, f2, f3, f4 be cubic polynomials in 1010 variables. Hilbert’s Syzygy Theorem says
pdim(f1, . . . , f4) ≤ 1010. Can we do better?



Stillman’s Conjecture

Stillman’s Conjecture (Proven by Ananyan–Hochster 2015)
Let f1, . . . , fr be polynomials of degree ≤ d. One can bound pdim(f1, . . . , fr ) solely in terms
of r and d (i.e. the bound is independent of the number of variables).

This is a version of Hilbert’s Syzygy Theorem as n→∞.

The cartoon to have in your head:
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How should we study polynomials as n→∞?

This was a real mystery, which is why Stillman’s Question was open for 20 years.

Main issue: no algebraic techniques for studying polynomials as n→∞.

A counterexample to Stillman’s Conjecture would be:
A sequence of polynomials f1,(n), . . . , fr ,(n) ∈ C[x1, . . . , xn] where deg(fi,(n)) ≤ d for all
1 ≤ i ≤ r and n ≤ ∞. And where pdim(f1,(n), . . . , fr ,(n))→∞ as n→∞.

Can’t study individual collections of polynomials. Need a framework where sequences of
polynomials as n→∞ make sense.

This leads fairly naturally to an ultraproduct framework.



From products to ultraproducts

Example∏
n∈NC is not itself a field. For instance if (an) = (1,0,1,0,1,0, . . . ) and

(bn) = (0,1,0,1,0,1,0, . . . ) then (an)(bn) = 0 but neither (an) nor (bn) is zero.
Same idea works if N = V ∪W and an = 0 ∀n ∈ V and bn = 0 ∀n ∈W .

Idea: force things to be 0 via an equivalence relation. Fix a non-principal ultrafilter U ⊆ 2I.
In the ultraproduct

∏
n∈NC/ ∼, we have (an) = 0 ⇐⇒ ∃V ∈ U where an = 0∀n ∈ V .

Properties of ultrafilters will ensure that this is a field:
For any S ⊆ N either V or its complement is in U.
If V ∈ U then any set containing V is also in U.
If V ,W ∈ U then so is V ∩W .



Ultraproduct ring

Definition
Let U be a non-principal ultrafilter on N. Let R be the ultraproduct of (C[x1, . . . , xn])n∈N
with respect to U (in the category of graded rings).

A degree d element of R is a sequence f(n) ∈ C[x1, . . . , xn] of degree d elements (mod ∼).

Example

The sequence (x2
1 + x2

2 + · · ·+ x2
n ) as n→∞ is an element of R.

Good news: this provides the framework we want. A counterexample to Stillman’s
Conjecture would be a sequence f1,(n), . . . , fr ,(n) ∈ C[x1, . . . , xn] of degree ≤ d polynomials
where pdim→∞ as n→∞. This determines f1, . . . , fr ∈ R of degree ≤ d .

Bad news: the ring R looks awful! Very non-noetherian. As a C-algebra, it requires an
uncountable number of generators in each degree d . Very far from Hilbert’s framework.



Main result
Actually, it’s all good news! The ring R is as well-behaved as we could’ve dreamed:

Theorem (Erman-Sam-Snowden, 2018)
The ultraproduct ring R is isomorphic to a polynomial ring K [Z] where K is the ultrapower
of C and where Z is a collection of variables of uncountable cardinality.

Upshot: let f1,(n), . . . , fr ,(n) a sequence of polynomials in C[x1, . . . , xn] as n→∞. Write
f1, . . . , fr for the corresponding elements in R.

Invariants play well with the sequences. E.g. there is some V ∈ U where

pdim(f1,n, . . . , fr ,n) = pdim(f1, . . . , fr ) for all n ∈ V .

Any question f1, . . . , fr ∈ R references only finitely many elements z1, . . . , zN of Z
The extension K [z1, . . . , zN ]→ K [Z] is very well behaved. (Faithfully flat.)
So it suffices to answer the question for f1, . . . , fr ∈ K [z1, . . . , zN ].
Now, Hilbert’s result do apply and we get everything we would ever want.



Back to complexity

We wanted to study r polynomials f1, . . . , fr of degree ≤ d in n variables as n→∞.
The ultraproduct R provides a framework for doing this.
Good algebraic properties of R give global bounds on the complexity of sequences
f1,(n), . . . , fr ,(n).
These in turn yield complexity bounds on f1, . . . , fr which are independent of n.
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What next?

1 What properties pass formally from the ultraproduct to the sequence? We want
theorems like: (f1, . . . , fr ) is a prime idea of R if and only if there exists V ∈ U where
(f1,(n), . . . , fr ,(n)) is a prime ideal of C[x1, . . . , xn] for all n ∈ V .

2 Is there a meta reason why the ultraproduct of “nice objects” (e.g. polynomial rings)
should be another “nice object”?

3 The ultraproduct allows limits of individual ring elements. But algebra tends to be
more interested in taking ideals or modules or varieties as the atomic objects. Do
ultraproducts (or other constructions) make sense in this setting?

4 Local rings: What properties does the ultraproduct of C[[x1, . . . , xn]] have?


