The Reverse Mathematics of Noether's Decomposition Lemma

Chris Conidis

College of Staten Island

March 15, 2021

Definition

A computable ring is a computable subset $A \subseteq \mathbb{N}$ equipped with two computable binary operations + and \cdot on A, together with elements $0, 1 \in A$ such that $R = (A, 0, 1, +, \cdot)$ is a ring.

All rings will be *countable* and *commutative*, unless we say otherwise.

Primary Decomposition Lemma

If R is Noetherian, then R contains only finitely many minimal prime ideals.

Primary Decomposition Lemma

If *R* contains infinitely many minimal prime ideals, then *R* is not Noetherian, i.e. *R* contains an infinite strictly ascending chain of ideals

$$I_0 \subset I_1 \subset I_2 \subset \cdots \subset I_n \subset \cdots \subset R, \ n \in \mathbb{N}.$$

Assume that R contains infinitely many distinct minimal primes. Need to construct an infinite strictly ascending chain

 $I_0 \subset I_1 \subset I_2 \subset \cdots \in R.$

Let $l_0 = \langle 0 \rangle_R \subset R$. Since R contains infinitely many minimal primes, $\langle 0 \rangle_R \subset R$ is not a prime ideal. Therefore there exist $a_1, b_1 \in R$ such that $a_1, b_1 \notin l_0$ but $a_1b_1 = 0 \in l_0$. Now, either a_1 or b_1 is contained in infinitely many minimal primes; add it to l_0 to get $l_1 \supset l_0$. Repeat with the invariant that

$$I_k = \langle c_1, c_2, \cdots, c_k \rangle_R \subset R, \ k \in \mathbb{N},$$

is contained in infinitely many minimal primes, and therefore is not prime itself. Uses $\emptyset^{\prime\prime}.$

The "Big Five:"

- RCA₀ : Recursive Comprehension Axiom
- WKL₀ : Weak König's Lemma
- ACA₀ : Arithmetic Comprehension Axiom
- ATR₀ : Arithmetic Transfinite Recursion
- $\Pi_1^1{-}\mathsf{CA}_0:\Pi_1^1{-}\mathsf{Comprehension}$ Axiom

- ADS : Ascending-Descending Chain Principle
- 2 MLR : Existence of 2-Random sets
- COH : Cohesive set principle
- AMT : Atomic Model Theorem

Definition

Let $T \subseteq 2^{<\mathbb{N}}$ be a tree. We say that T is completely branching if for all $\sigma \in T$, $\sigma^+ = \{\sigma 0, \sigma 1\} \subset 2^{<\mathbb{N}}$, either

$$\sigma^+ \subset T$$
 or $\sigma^+ \cap T = \emptyset$.

TAC (Tree Antichain Theorem)

Every infinite completely branching computably enumerable tree $T \subseteq 2^{<\mathbb{N}}$ contains an infinite antichain.

TAC (Tree Antichain Theorem–Equivalent Version)

Every infinite tree $T \subseteq 2^{<\mathbb{N}}$ with no terminal nodes and infinitely many splittings has an infinite antichain.

Fact (RCA₀)

TAC follows from each of 2-MLR and ADS (individually).

Fact (RCA₀)

TAC is restricted Π_2^1 .

Fact (RCA₀)

TAC does not follow from WKL

Corollary

TAC is not equivalent to any other "known" subsystem of Second-Order Arithmetic.

Chris Conidis

Definition

Let R be a ring with multiplicative identity 1_R .

- We say that ideals $I, J \subseteq R$ are coprime whenever I + J = R, i.e. $1_R \in I + J$.
- We say that ideals $I, J \subseteq R$ are <u>uniformly coprime</u> if for all $x \in I \cap J$ there exist $y \in I$, $z \in \overline{J}$, and $a, b \in R$ such that x = yz and $ay + bz = 1_R$.

Theorem A

If R has infinitely many coprime minimal primes, then R is not Noetherian.

Theorem B

If *R* has infinitely many uniformly coprime minimal primes, then *R* is not Noetherian.

Theorem (RCA₀ + B Σ_2)

Theorem B is equivalent to TAC.

Conjecture (RCA₀ + B Σ_2)

Theorem A is equivalent to TAC.

TAC implies Theorem B

Given R with infinitely many minimal primes, construct $T = T_R \subseteq 2^{<\mathbb{N}}$ such that:

• every $\sigma \in T$ corresponds to some (zero-divisor) $x_{\sigma} \in R$;

•
$$\prod_{\sigma \in S} x_{\sigma} = 0_R$$
 whenever *S* covers $2^{\mathbb{N}}$;

- paths in T correspond to annihilator ideals;
- maximal paths correspond to maximal annihilator (hence minimal prime) ideals.

If $\{\alpha_i : i \in \mathbb{N}\}$ is an infinite *T*-antichain, and

$$I_N = Ann(\prod_{i=1}^N x_{\alpha_i}),$$

then

$$I_0 \subset I_1 \subset I_2 \cdots \subset I_N \subset \cdots$$

Given infinite Σ_1^0 completely branching $T \subseteq 2^{<\mathbb{N}}$. Construct *R* via:

- *R* is a quotient of $\mathbb{Q}[X_{\sigma} : \sigma \in T]$ such that
 - $X_{\emptyset} = 0 \in R$,
 - $X_{\sigma 0}X_{\sigma 1}=X_{\sigma}$, and
 - inverses for all polynomials such that the intersection of the partial- $2^{\mathbb{N}}$ -coverings yielded by the monomials is empty.
- *R* is a PIR; every ideal $I \subset R$ is generated by a monomial.
- Given an infinite strictly ascending R-chain, one can effectively find a principle generator for each ideal in the chain and use B Σ_2 along with the sequence of exponents of these generators to build an infinite antichain of T in the context.

First-Order Considerations

Over RCA_0 we have that $\mathsf{TAC} \to \mathsf{Theorem}~\mathsf{B}.$ The converse follows from $\mathsf{RCA}_0 + \mathsf{B}\Sigma_2.$

Definition (RCA₀)

For each $n \in \mathbb{N}$, let n-TAC be the principle that says "for every infinite tree $T \subseteq 2^{<\mathbb{N}}$ with infinitely many splittings, there is a (path-)nonincreasing $f_T : T \to \mathbb{N}$ such that:

- $f(\emptyset) = n;$
- there exist infinitely many $\sigma \in \mathcal{T}$ and $i_{\sigma} \in \{0,1\}$ such that:

 $f(\sigma) > f(\sigma i_{\sigma}).$

TAC is equivalent to 1-TAC. Let WTAC be n-TAC without the n.

TAC \longrightarrow Theorem B \longrightarrow WTAC, over RCA₀. TAC \longleftrightarrow Theorem A/B \longleftrightarrow WTAC, over RCA₀+B Σ . Q: What is the first order part of *n*-TAC, WTAC? The Reverse Mathematics of Noether's Decomposition Lemma

Consequences of the Hilbert Basis Theorem: The Krull Intersection Theorem

Theorem (Krull Intersection Theorem; KIT)

If R is an integral domain, $I \subset R$ an ideal, then

$$\bigcap_{n\in\mathbb{N}}I^n=0_R.$$

Theorem (RCA₀, Conidis (2021))

KIT implies WKL₀.

The Primary Decomposition Lemma

We need to use infinite combinatorial structures (graphs) that are more general than trees and include (undirected) cycles.

Theorem

The Primary Decomposition Lemma follows from CAC+WKL₀.

Lemma (RCA₀)

- If R is Noetherian, then the nilradical $N \subset R$ exists and $N^n = 0_R$, for some $n \in \mathbb{N}$.
- PDL implies KIT (and thus WKL₀).

Conjecture (RCA₀)

The Primary Decomposition Lemma implies:

- KIT; (Milne's Lecture Notes; online)
- WKL₀;
- TAC+WKL₀.

Thank You!