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Topological dynamics

G–topological group
X–compact Hausdorff space (the phase space)

A G-flow is a continuous action

G×X //X

ex =x

(gh)x =g(hx)

Equivalently, a continuous homomorphism

G // (Homeo(X), compact-open)

EXAMPLES

1 Zn acting on a regular n-gon.

2 Z acting on S1 by rotations.

3 Homeo(2N) acting on 2N by evaluation.
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Minimal flows and ambits

A Gy X is minimal if X has no non-trivial proper closed
invariant subset.

←→

∀x ∈ X the orbit Gx = {gx : g ∈ G} is dense in X.

EXAMPLE: Z y S1 by irrational rotation.

The universal minimal flow M(G) is a minimal flow that
homomorphically maps onto any minimal flow.
EXAMPLE: A compact group Gy G by left translation.

An ambit is a pointed flow (X,x0) for some x0 ∈ X such that
Gx0 is dense in X.

Greatest ambit is universal for all ambits.

Dana Bartošová Extensions of and by compact groups



Greatest ambit for countable discrete groups

G – countable discrete group with neutral element e.

βG – space of all ultrafilters on G.

We consider G ⊂ βG via principal ultrafilters.

G× βG // βG, gu = {gA : A ∈ u}

is the greatest ambit:

For every continuous action Gy X on a compact
Hausdorff space X and x0 ∈ X, there is φ : βG //X,
φ(e) = x0, φ a flow homomorphism.
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Universal minimal flow for countable discrete groups

G – countable discrete group with neutral element e

Any minimal subflow of βG is the universal minimal flow of G.

Theorem (Turek; Balcar–Franěk;
Glasner–Tsankov–Weiss–Zucker)

Phase spaces of universal minimal flows of countable discrete
groups are all homeomorphic.

Gleason cover of 22
ℵ0 – unique compact extremally

disconnected irreducibly mapping onto 22
ℵ0 = Stone space of

the regular open algebra of 22
ℵ0 .

Remark: We still have no understanding of the universal
minimal action.
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Other known phase spaces

If G is compact, M(G) is Gy G by left translation.

In the last two decades, metrizable universal minimal flows have
been enjoying much interest, especially for groups of
automorphisms of countable first-order structures.

FACT

Let G is the automorphism group of a countable first order
structure. If the universal minimal flow of G is metrizable,
then its phase space is homeomorphic to either a finite set
or 2ω.

Any method that shows that the universal minimal flow is
metrizable concretely computes it (including the action) using
Ramsey theory.
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Metrizable universal minimal flows

If M(G) is trivial, we call G extremely amenable.

1 U(l2) (Gromov and Milman).

2 Aut(Q, <) (Pestov).

3 Iso(U, d) (Pestov).

4 isol(G) (B., Lopéz-Abad, Lupini, and Mbombo).

5 many more (Kechris, Pestov, and Todorčević).

Groups whose universal minimal flow’s phase space is 2N

1 S∞(N) (Glasner and Weiss).

2 Homeo(2N) (Glasner and Weiss).

3 Aut(A), where A is the random (Kn-free graph),
hypergraph, ℵ0-dimensional vector space over a finite field,
. . . (KPT)
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Question

What about other classes of topological groups?

Close to discrete groups are locally compact groups.

Theorem (van Dantzig)

Every locally compact group of automorphisms of a countable
first order structure is homeomorphic to a countable discrete
set, 2N or N× 2N.

Question

Is the phase space of every Polish t.d.l.c. group homeomorphic
to a finite set, M(N), 2N, or M(N)× 2N?

Yes, if the group contains an open compact normal subgroup, in
particular, every Abelian one.
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Group extensions

G,K,H – topological groups

G is an extension of K by H if there is a short exact sequence

{e} //K //G //H // {e},

maps – continuous open group homomorphism.

WLOG K EG

H ∼= G/K.

If the sequence splits then G ∼= H nK.

EXAMPLE

0 // SLn(R) //GLn(R) // R // 0.
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The result

G is SIN if the left and right uniformities coincide, equivalently
e ∈ G has a basis of V s.t. gV g−1 = V for all g.

Theorem

Let G be a topological group with a compact normal subgroup K.
Suppose that K acts freely on M(G). If there is a uniformly
continuous cross section from G/K to G and G is SIN, or if the
cross section is a group homomrphism then
M(G) ∼= M(G/K)K.

For a quotient map π : X // Y of topological spaces, a cross
section is a map s : Y //X such that π ◦ s = IdY .

Corollary (Kechris and Sokić for metrizable)

If G ∼= H nK, then M(G) ∼= M(H)×K.

If G is not SIN, we still obtain a homeomorphism.
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Further

1 //K //G //H ∼= G/K // 1

1 What if K is not normal.

2 What if the cross section G/K //G is not uniformly
continuous.

3 What if K is not compact, but G/K is? (considered by
Kechris and Sokić for G Polish with M(G/K) metrizable)
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Orbit space

Let X be a G-flow and K a compact subgroup of G.

The orbit equivalence relation is closed in X ×X.

X/K is the quotient space.

G/K naturally acts on X/K.
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Greatest ambit

G–topological group
K EG – compact

G× S(G)/K // S(G)/K

is an ambit

G× S(G/K) // S(G/K)

is also an ambit.

Theorem

If s : G/K //G is a uniformly continuous cross section, then it
extends to a cross section S(G)/K // S(G).

Corollary

S(G) is homeomorphic to S(G/K)×K.
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Universal minimal flow and semidirect products

M(G)/K ∼= M(G/K)

M(G) is homeomorphic to M(G/K)×K.

Let G ∼= G/K nK, i.e., there is a uniformly continuous cross
section s : G/K //G which is a group homomorphism. Let
s′ : S(G/K) // S(G) be its extension. Then

M(G/K)×K //M(G), (m, k) 7→ ks′(m)

is a flow isomorphism.
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SIN groups

– left and right uniformities coincide.
– basis at e of V ’s s.t. gV g−1 = V for every g ∈ G.
– multiplication and inversion are uniformly continuous.

The greatest ambit S(G) supports both the right and left
actions G× S(G)×G.

1 //K //G //G/K // 1

K compact.

Left and right orbit spaces S(G)/K and K\S(G) coincide.
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Making up for not splitting

K EG compact.
s : G/K //G uniformly continuous cross section,
s′ : S(G)/K // S continuous cross section extending s.
K y S(G) is free.

ρ : G× S(G)/K //K

s′(Kgu)ρ(g,Ku) =gs′(Ku)

gives an action

G×S(G)/K×K //S(G/K×K), g(Ku, k) = (Kgu, ρ(g,Ku)k).

Finally,

S(G)/K ×K // S(G), (Ku, k) 7→ s′(Ku)k

is an ambit homomorphism.
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The end

Děkuji!

Dana Bartošová Extensions of and by compact groups




