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Recall Ramsey’s theorem:

Theorem (Ramsey 1930)

Let n, r < ω. Then
ℵ0 → (ℵ0)nr

meaning that for any coloring γ of [ℵ0]n into r colors, there is an
infinite X ⊆ ω with |γ[[X ]n]| = 1.

How to generalize? Can change the cardinals which appear.

Theorem (Erdős-Rado 1956)

Let n < ω, and let κ be an infinite cardinal. Then

(in−1(κ))+ → (κ+)nκ
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Another generalization: color finite substructures of a given infinite
structure, while demanding that the “monochromatic set” is a
structure specified in advance.

Example: the Rado graph

Suppose we color the vertices of the Rado graph in finitely many
colors. Can we find an infinite induced subgraph isomorphic to the
Rado graph whose points all receive one color? YES (not difficult)

Suppose instead we color the edges. Then the answer is NO.
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Erdős, Hajnal, and Pósa (1973) give the following 2-coloring of the
edges of the Rado graph.

Enumerate the vertices, say R = {vn : n < ω}. Define sn ∈ 2<ω by
declaring sn ∈ 2n, and for m < n, we have sn(m) = 1 iff E (vm, vn).

Now define γ : E (R)→ 2 as follows. Suppose E (vm, vn) with
m < n. We set γ(vm, vn) = 0 iff sm �lex sn, and γ(vm, vn) = 1
otherwise.

Then any induced subgraph isomorphic to the Rado graph must
contain both colors of edges.
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Remarkably, 2 colors is the worst possible.

Theorem (Pouzet, Sauer (1996))

For any ` < ω and any coloring γ : E (R)→ `, there is X ⊆ R
which induces a copy of the Rado graph all of whose edges receive
at most 2 of the colors.

About a decade later, Sauer proved an analogous result for every
finite graph. If A is a finite graph, let

(R
A

)
denote the copies of A

inside R.

Theorem (Sauer (2006))

There is a number T (A) < ω so that for every ` < ω and any
colooring γ :

(R
A

)
→ `, there is X ⊆ R inducing a copy of the Rado

graph so that
(X
A

)
receives at most T (A) of the colors.
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The idea comes from revisiting the binary tree.

Given s, t ∈ 2<ω with |s| < |t|, we put E (s, t) iff t(|s|) = 1. The
resulting graph is bi-embeddable R.

Now every finite subgraph S ⊆ 2<ω gives rise to an envelope, i.e.
the subtree generated by S .

Upper bounds now follow from Milliken’s theorem, a difficult
Ramsey-like theorem about coloring the strong similarities of the
tree 2<N into 2<ω
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Soon after, Laflamme, Vuksanović, and Sauer (2007) characterized
the value of T (A) exactly for every finite graph A.

This is done by finding a copy of the Rado graph inside 2<ω giving
rise to as few distinct envelopes as possible. We briefly describe
the unavoidable envelopes.
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One can find R ′ ⊆ 2<ω a copy of the Rado graph with the
following properties:

1 R ′ ⊆ 2<ω is an antichain.

2 For every m < ω, the level 2m contains at most one node of
the form s ∧ t with s, t ∈ R ′ (even allowing s = t).

3 If s 6= t ∈ R ′ with |s ∧ t| = m and u ∈ R ′ satisfies |u| > m
and u|m 6= s ∧ t, then u(m) = 0.

Conversely, any envelope with these three properties must appear
in any copy of the Rado graph in 2<ω.
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We can generalize this entire discussion to other Fräıssé structures.
Recall that a Fräıssé class is a class K of finite structures satisfying
the following three properties:

1 Hereditary Property (HP): K is closed under substructures.

2 Joint Embedding Property (JEP): Given A,B ∈ K, there is
C ∈ K which embeds both A and B.

3 Amalgamation Property (AP): Given A, B, C ∈ K and
embeddings f : A→ B and g : A→ C, there is D ∈ K and
embeddings r : B→ D and s : C→ D with r ◦ f = s ◦ g .
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Given a Fräıssé class K, the Fräıssé limit of K is a countably
infinite structure K so that:

1 The finite substructures of K, up to isomorphism, are exactly
the members of K.

2 If A ⊆ K is a finite substructure and f : A→ K is an
embedding, there is g ∈ Aut(K) with g |A = f .

These two properties define K uniquely up to isomorphism. Write
Flim(K) for this structure.

Andy Zucker Big Ramsey degrees



In this talk, our Fräıssé classes and structures will always satisfy
the following extra assumptions:

1 We only consider finite relational languages, and all relational
symbols have arity at most 2. We call these finite binary
languages. L always denotes such a language.

2 We consider Fräıssé classes K which have free amalgamation:

Given an amalgamation problem (f : A→ B; g : A→ C), we
can find a solution (r : B→ D; s : C→ D) with

Im(r) ∩ Im(s) = Im(r ◦ f ) = Im(s ◦ g)

Whenever R is a relational symbol, x , y ∈ D, and RD(x , y)
holds, we have x , y ∈ Im(r) or x , y ∈ Im(s)
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Definition

Let K be a countably infinite first-order structure, and let A be a
finite structure with Emb(A,K) 6= ∅. Let ` < r < ω. We write

K→ (K)Ar ,`

if for any coloring γ : Emb(A,K)→ r , there is η ∈ Emb(K,K) with
|γ[η · Emb(A,K)]| = |Im(γ · η)| ≤ `.

The Ramsey degree of A in K is the least ` < ω, if it exists, with
K→ (K)Ar ,` for every r > `.

If K is a Fräıssé class with limit K, we say that A ∈ K has big
Ramsey degree ` < ω if A has Ramsey degree ` in K.

We say that K has finite big Ramsey degrees if every A ∈ K has
some finite big Ramsey degree.
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This definition colors embeddings instead of substructures, but one
can easily move between the two notions. The “embedding” big
Ramsey degree of A ∈ K is just the “substructure” big Ramsey
degree of A ∈ K times |Aut(A)|.

So we can rephrase the result of Pouzet and Sauer to say that the
edge has big Ramsey degree 4 in the class of finite graphs.
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More difficult example: Henson’s triangle-free graph K, the Fräıssé
limit of the class K of finite, triangle-free graphs.

Theorem (Dobrinen (2020, appearing 2016))

The class K of finite triangle-free graphs has finite big Ramsey
degrees.

Let’s consider the binary tree again to see why this theorem is so
much harder than Sauer’s result...
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Problem 1: the graph structure we placed on 2<ω is not
bi-embeddable with K.

Solution: designate some of the vertices of 2<ω as coding nodes.

One way to do this is to revisit the Erdős-Hajnal-Pósa strategy of
associating the vertices of an enumerated graph with nodes of a
binary tree. The exact same mapping makes sense for any
countable graph.

K = {vn : n < ω}, and set sn ∈ 2n via sn(m) = 1 iff E (vm, vn).
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Problem 2: now 2<ω has a whole bunch of coding nodes, making
tree embeddings more complicated. We have to send coding nodes
to coding nodes.

But it’s worse that that...we have to anticipate ahead of time
where coding nodes can appear, and how different coding nodes in
different parts of the binary tree will interact with each other.

Andy Zucker Big Ramsey degrees



Andy Zucker Big Ramsey degrees



Towards the first main result of today’s talk:

A relational structure is called irreducible if it is not a free
amalgam of any two proper substructures.

If F is a set of finite, irreducible L-structures, then Forb(F), the
class of finite L-structures which do not embed any structure from
F , is a free amalgamation class.

Conversely, every Fräıssé free amalgamation class has the form
Forb(F) for some set of finite irreducible structures.

F could be infinite.
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Theorem (Z. 2020)

Let L be a finite binary language, and suppose K = Forb(F) for F
a finite set of finite irreducible L-structures. Then K has finite big
Ramsey degrees.

Sauer (2002): there are free amalgamation classes of finite directed
graphs where vertices do not have finite big Ramsey degree.
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Proof idea (using triangle-free graphs as our running example):

Revisit the binary tree with coding nodes. Add extra structure to
tell us how to anticipate coding nodes.

Consider 2m ⊆ 2<ω. Each t ∈ 2m represents a type over
{v0, ..., vm−1}.

Given X ⊆ 2m, an X -labeled graph is a graph B along with a map
γB : B → X .

B[m] is the graph on B t {v0, ..., vm−1} with edges between y ∈ B
and {v0, ..., vm−1} described by the type γB(y).

K(X ) = {finite X -labeled B : B[m] is triangle-free}
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We equip every level subset X ⊆ 2<ω with the information K(X ).
The result is an aged coding tree.

For triangle-free graphs, this extra structure on level sets of 2<ω is
entirely described by what happens on pairs of nodes.

The next illustration only considers pairs of nodes where each node
can extend to a coding node.

Andy Zucker Big Ramsey degrees



Andy Zucker Big Ramsey degrees



One then considers aged embeddings from finite coding trees into
2<ω, i.e. strong similarities that respect coding nodes and the
age-set structure.

A Ramsey-like theorem similar to Milliken’s theorem can then be
proven for these objects. The proof uses forcing, ultrafilters, the
Erdős-Rado Theorem, and other fun stuff.

Unlike the case for all finite graphs, we don’t immediately get finite
upper bounds on the big Ramsey degree; we have to construct a
subcopy of K so that for a given finite triangle-free graph, copies of
this finite subgraph only generate finitely many shapes of envelope.
The problem is the coding nodes.
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Recently, Dobrinen, and independently Balko, Chodounský,
Hubička, Konečný, Vena, and Z. have given a precise
characterization of the big Ramsey degrees of triangle free graphs.

We then joined forces to prove:

Theorem (BCDHKVZ (2020))

If K = Forb(F) for F a finite set of finite irreducible L-structures,
then we can exactly characterize the big Ramsey degrees.

Furthermore, if K = Flim(K), then K admits a big Ramsey
structure.
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There is a subset of coding nodes K ′ ⊆ 2<ω coding the Henson
triangle-free graph so that the following all hold:

1 K ′ ⊆ 2<ω is an antichain.

2 All “external” coding nodes (the coding nodes not in K ′, but
that we need to make envelopes) are 0n for some n < ω.

3 Any non-coding level of the envelope has either exactly one
splitting node or exactly one age change between two nodes.

4 If m is a non-coding level and t ∈ K ′ is such that t|m isn’t a
splitting node or involved in an age change, then t(m) = 0.

5 If t ∈ K ′ with |t| = m and x ∈ K ′ with x |m 6∈ {0m, t}, then
K(x |m, t) is the set of edgeless graphs iff x(m) = 0.

Conversely, any envelope with these properties must appear in any
set of coding nodes coding the Henson triangle-free graph.
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Thanks!
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