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Wadge comparability



Wadge reducibility

We work in Baire space ωω.

Definition
Let A,B Ď ωω. We say that A is Wadge reducible to B (and write
A ďW B) if A is a continuous pre-image of B: for some continuous
function f : ωω Ñ ωω,

x P A ô fpxq P B.

This gives rise to Wadge equivalence and Wadge degrees.



Wadge comparability

The Wadge degrees of Borel sets are almost a linear ordering:

Theorem (Wadge comparability, c. 1972)

For any two Borel sets A and B, either

§ A ďW B, or

§ B ďW AA.

Further facts on Wadge degrees of Borel sets:

§ They are well-founded (Martin and Monk);

§ They alternate between self-dual and non self-dual degrees;

§ The rank of the ∆0
2 sets is ω1, other ranks given by base-ω1

Veblen ordinals.



The Wadge game

Wadge comparability is usually proved by applying determinacy to
the game GpA,Bq:

§ Player I chooses x P ωω;

§ Player II chooses y P ωω;

§ Player II wins iff x P A ô y P B.

A winning strategy for Player II gives a Wadge reduction of A to B; a
winning strategy for player I gives a Wadge reduction of B to AA.

Hence, AD implies Wadge comparability of all sets.



Wadge comparability and determinacy

§ Π1
1 determinacy is equivalent to Wadge comparability of Π1

1

sets (Harrington 1978);

§ Π1
2 determinacy is equivalent to Wadge comparability of Π1

2

sets (Hjorth 1996).

Borel determinacy is provable in ZFC (Martin 1975) and so Wadge
comparability of Borel sets is provable in ZFC.

Theorem (H.Friedman 1971)
Borel determinacy requires ω1 iterations of the power set of N.

In particularly, Borel determinacy is not provable in Z2.



The strength of Borel Wadge comparability

Theorem (Louveau and Saint Raymond, 1987)

Borel Wadge comparability is provable in Z2.

Theorem (Loureiro, 2015)

§ Lipschitz comparability for clopen sets is equivalent to ATR0.

§ Wadge comparability for some Boolean combinations of open
sets is provable in Π1

1-CA0.

Theorem
Borel Wadge comparability is provable in ATR0+Π1

1-induction.



Background: Effective methods in DST



Boldface and lightface

Effective descriptive set theory relies on the relationship between
lightface and boldface pointclasses:

§ A set is open ô it is Σ0
1pxq for some parameter x;

§ A function is continuous ô it is x-computable for some x;

§ A set is Borel ô it is hyperarithmetic in some x;

and so on.



Example

Theorem (Luzin/Suslin)
If B is Borel, f is continuous and f æB is 1-1, then f rBs is Borel.

Proof.
Wlog, f is computable and B is ∆1

1.

Let x P B; let y “ fpxq. Then x is the unique solution of

x P B & y “ fpxq,

so x is a ∆1
1pyq-singleton; it follows that x P ∆1

1pyq.

So

y P f rBs ðñ pDxq y “ fpxq ðñ pDx P ∆1
1pyqq y “ fpxq.

The second condition is Σ1
1; by Spector-Gandy, the third is Π1

1.



Other examples

There are many other examples:

§ Measurability of Π1
1 sets (Sacks);

§ Perfect set property of Σ1
1 sets;

§ Π1
1 uniformisation (Kondo, Addison);

§ Louveau (1980) used his separation theorem to solve the
section problem for Borel classes;

§ E0 dichotomy for Borel equivalence relations:
Harrington,Kechris,Louveau (1990);

§ G0 dichotomy for Borel chromatic numbers:
Kechris,Solecki,Todorcevic (1999).



Generalised homeomorphisms and the Turing jump



Generalised homeomorphisms

Proposition (Kuratowski)

A set A is ∆0
1`α iff there are:

§ a closed set E;

§ a clopen set D; and

§ a bijection h : ωω Ñ E such that:

h is Baire class α;
h´1 is continuous

such that for all x,
x P A ô hpxq P D.

Lightface version:

Proposition

A set A is ∆0
1`α iff there is a ∆0

1 set D such that for all x,

x P A ô xpαq P D.



Making Borel sets clopen

Proposition

If A is Borel, then there is a Polish topology on ωω extending the
standard one, which has the same Borel sets, and in which A is
clopen.

Proof.
Pull back the topology from the image of the α-jump.



True stages



Iterated priority arguments

Theorem (Watnick;Ash,Jockusch,Knight)

Let α be a computable ordinal, and let L be a ∆0
2α`1 linear ordering.

Then Zα ¨ L has a computable copy.

This is usually presented as an application of Ash’s “η-systems”. His
metatheorem is used to conduct priority arguments at level Hpηq.

Other methods:

§ Harrington “worker arguments”.

§ Lempp-Lerman trees of strategies.



1-true stages

Montalbán gave a dynamic presentation of Ash’s metatheorem. His
technique of α-true stages allows for very fine control of the priority
argument at each level β ď α.

For α “ 1 this was done by Lachlan. The main idea:

§ Suppose that xAsy is a computable enumeration of a c.e. set
A Ď N. Say that at stage s, a single number ns enters A. A stage
s is a Dekker nondeficiency stage if for all t ě s, nt ě ns. There
are infinitely many nondeficiency stages. (This is used to show
that every nonzero c.e. degree contains a simple set.)

§ Lachlan: Suppose that at stage s, we guess that As æns is an
initial segment of A. Then at nondeficiency stages the guess is
correct.

A stage s is 1-true if H1s æns ă H1.



Finite injury arguments

Suppose that we want to perform a finite injury priority
construction. We construct some computable object, but we really
want to know some ∆0

2 information to do so. At each stage, H1s
gives us answers to some of our questions.

§ We do not know which stages are 1-true.

§ But from the point of view of a stage t, looking back:

If s ă t is 1-true, then t thinks that s is 1-true.
If s ă t is not 1-true, then t may not have enough information to
know it. However:
If t is 1-true, then s ă t is 1-true iff s is 1-true.

The relation “s appears 1-true at stage t” (denoted by s ď1 t) is
computable for finite stages s and t. This is what allows us to
perform a computable construction.



α-true stages

Montalbán’s idea was to iterate this up the hyperarithmetic
hierarchy.

§ A stage is 2-true if it is 1-true relative to the 1-true stages.
Similarly, s ď2 t if s ď1 t, and further, looking at the
enumeration of H2 using the oracles H1r for r ď1 t, we have not
yet discovered that s is a deficiency stage for that enumeration.

§ Similarly for n` 1.

§ For limit λ, s is λ-true if it is β-true for all β ă λ, and similarly for
s ďλ t. This mirrors Hpλq “

À

βăλH
pβq.

§ Main question: why are there λ-true stages? Some modificaton
using a diagnoal intersection is needed.

§ Technical device: we can replace Hpβq by the sequence of
β-true stages.



Relativised α-true stages

The construction of α-true stages can be uniformly relativised to
oracles x P ωω. The notion s ďα t relative to x can be made to only
depend on xæ t. We obtain relations ďα on ωďω with a variety of nice
properties:

§ σ ď0 τ ô σ ď τ .

§ For each β, the relation Jβ “ pωăω; ďβq is a computable tree.

§

x ÞÑ xσ : σ ăβ xy

is a bijection between ωω and the paths of Jβ .

§ The relation σ ăβ x is ∆0
1`β .

§ A set A is Σ0
1`β iff there is a c.e. set U Ď ωăω such that

x P A ô pDσ ăβ xqσ P U.

§ The relations ďβ are nested and continuous.



Some simple applications



Change of topology

Proposition

Let β ă ωck
1 . There is a Polish topology on ωω extending the

standard one such that:

§ Every standard ∆0
1`β set is clopen in the new topology;

§ Every new open set is old Σ0
1`β .

Proof.
Define the distance between x and y to be 2´|σ|, where σ is greatest
such that σ ăβ x and σ ăβ y.



Hausdorff-Kuratowski

Theorem (Haudorff-Kuratowski)

For each countable ξ,

∆0
ξ`1 “

ď

ηăω1

DηpΣ
0
ξq

Where DηpΣ
0
ξq is the ηth level of the Hausdorff difference hierarchy:

sets of the form

ď

´

Ai ´
ď

jăi

Aj

¯

vi ă η & paritypiq ‰ paritypηqw

where A0 Ď A1 Ď ¨ ¨ ¨ is an increasing η-sequence of Σ0
ξ sets.



Shoenfield, Hausdorff, and Ershov

Uniform limit lemma:

§ A set A is ∆0
2 iff there is a computable function f : ωăω Ñ t0,1u

such that for all x,
Apxq “ lim

σăx
fpσq.

A set A is DηpΣ0
1q iff the relation x P A is η-c.e., uniformly in x:

There are computable functions f : ωăω Ñ t0,1u and r : ωăω Ñ η ` 1
such that:

§ For all x, Apxq “ limσăx fpσq;

§ If σ ď τ then rpτq ď rpσq;

§ If rpσq “ η then fpσq “ 0;

§ If σ ď τ and fpσq ‰ fpτq then rpτq ă rpσq.



Effective Hausdorff-Kuratowski

Theorem (Louveau and Saint Raymond,1988; Selivanov
2003; Pauly 2015)

∆0
2 “

Ť

ηăωck
1

DηpΣ0
1q.

Proof.
Suppose that A is ∆0

2; fix a computable approxmation
f : ωăω Ñ t0,1u for A.
Set:

§ rpσq “ 0 if p@τ ě σq fpτq “ fpσq.

§ rpσq ď γ if for all τ ą σ, if fpτq ‰ fpσq then rpτq ă γ.

The empty string is ranked, otherwise we construct a path on which
fpσq does not converge.
The ranking process is hyperarithmetical (need one jump for each
level), so the rank of the empty string is computable.
Then xfpσq, rpσqyσăx is as required.



Effective Hausdorff-Kuratowski

Theorem
For any computable ξ,

∆0
ξ`1 “

ď

ηăωck
1

DηpΣ
0
ξq.

Proof.
Repeat the previous proof, but replace σ ď τ by σ ďξ τ .



Wadge analysis of ∆ classes

Let λ be a limit ordinal, and let Γ be a pointclass.

PUăλpΓq

is the pointclass of all sets A for which there is some α ă λ and a
partition pCnq of ωω of ∆0

α sets such that for all n, AæCn P Γ.

Theorem (Wadge)

For every limit λ ă ω1,

∆0
λ “ PUpω1q

ăλ p∆
0
ăλq.



Effective Wadge

Theorem
For every limit λ ă ωck

1 ,

∆0
λ “ PUpω

ck
1 q

ăλ p∆0
ăλq.

Let A P ∆0
λ. There is a clopen set D such that

x P A ô xpλq P D.

The tree of σ P Jλ which decide D is computable and well-founded,
so has computable rank.
Fact:

§ The relation σ ăλ x is ∆0
λn

, where n is the height of σ in Jλ.

Hence, by induction on α “ rkpσq,

Aætx : σ ăλ xu P PUpαqp∆0
ăλq.



Wadge comparability



Describing classes, using determinacy

There are comprehensive descriptions of Borel Wadge classes:

§ Louveau (1983);

§ Duparc (2001);

§ Selivanov for k-partitions (2007,2017);

§ Kihara and Montalbán for functions into a countable BQO
(2019).

To show every class is covered, one usually:

§ Uses determinacy to show the degrees are almost well-ordered;

§ In some form, perform induction on the Wadge degrees to show
each one is described.

This route is closed to us.



The structure of the argument

We follow Louveau and Saint Raymond:

§ Define a collection of descriptions for (non self-dual) Wadge
classes.

§ Show these all have universal sets.

§ Show that the described classes are almost linearly-ordered.

§ Show that the described classes are well-founded.

§ Perform a careful analysis of the ambiguous part ∆pΓq for each
described class Γ, to conclude that every class is described.

In second-order arithmetic, we need to do everything effectively.



The main step

The main step is the following separation result.

Theorem (Louveau and Saint Raymond)

Suppose that Γ is a described class. Let A P Γ; let B0 and B1 be two
disjoint Σ1

1 sets. Then either:

1. There is a continuous reduction of pA,AAq into pB0,B1q; or

2. There is a Γ̌ separator of B0 from B1.

As a result: if A is universal for Γ, and B is Borel, then either A ďW B,
or B P Γ̌, in which case B ďW AA.

This shows that the described classes are almost linearly ordered.



Unravelling games

The direct way to prove this result would be to use determinacy for
a naturally associated game. However, Louveau and Saint Raymond
show:
To each class Γ we can associate a closed game GpA,B0,B1q for
which:

§ A winning strategy for II gives a continuous reduction of pA,AAq
to pB0,B1q;

§ From a winning strategy for I we can find a Γ̌ separator of B0

from B1.

Our main step is to give a relatively simple description of such a
game. Take for example the class Γ “ Σ0

ξ . Suppose that Ti is a tree
whose projection is Bi.

§ Player I plays x P A or in AA.

§ Player II attempts to play y P B0 or B1 and a witness f P rTis.

§ The bits of y are read off the ξ-true stages of II’s play.



Thank you


