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Set theory

m Cardinal characteristics (of the continuum) are natural
cardinals that measure the deviation from CH.

m Many are based on binary relations. E.g. b is the unbounding
number: the least size of a class of functions on w that is not
dominated by a single function.

m Others are based on cardinals of subclasses of [w]* (the infinite
subsets of w) viewed up to almost equality.

m One of them is called the almost disjointness number,
denoted a.

m This is the least size of a maximal almost disjoint family of
subsets of w.

m Almost disjoint means that any two distinct sets in the family
have finite intersection.
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ZFC relations, and inequalities

In this area of set theory, one tries to obtain ZFC relations between
cardinal characteristics. Recall:

m b is the unbounding number: the least size of a class of
functions on w that is not dominated by a single function.

m a is the least size of a maximal almost disjoint family of
subsets of w.

Fact
b <a.

(See e.g. Logic Blog ‘19 for a proof of this well known fact.)
In the opposite direction, using (iterated) forcing one tries to
separate cardinal characteristics.
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Ultrafilter, tower, and independence number

Further cardinal characteristics based on properties of subsets of
[w]“ under almost inclusion C*:

m the ultrafilter number u is the least size of a set with upward
closure a free ultrafilter on w,

m the tower number t is the least size of a linearly ordered subset
of [w]“ that can’t be extended by putting a new element below
all given elements,

m the independence number i is the least size of a maximal
independent set in the Boolean algebra P(w)/ =*.
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Diagram of ZFC relations (Soukup, 2018)
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t and s are the unreaping and splitting numbers, respectively. Their
analogs in computability have been studied e.g. Brendle et al, ‘14.

¢ is the escaping number due to Brendle and Shelah. Its analog in
computability theory has been studied by Valverde and Tveite (2017).

5/ 32



Collections of computable subsets of w

m Our basic objects will be collections of infinite computable sets
in the context of almost inclusion.

m Such a collection C is encoded by a set F' such that
C=Cp={FM":necN}.

Definition

F" denotes the column {z: (z,n) € F} of aset F C w.
We will usually denote this by F,.
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Analogous mass problems in computability

A mass problem is a set of functions f: N — N.

m We view properties of such encoded collections of computable
sets as mass problems. They consist of the characteristic
functions of the encoding sets F'.

m One can compare their complexities via Muchnik
reducibility <,, and the stronger, uniform Medvedev
reducibility <j:

C <, D if IBYX € D[d¥ € C].
m ZFC relations of cardinal charactertistics correspond to

Muchnik/ Medvedev reductions of their analogs?
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The mass problems A and T

of maxinally almost disjoint sets

and maximal towers
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The mass problem A of MAD sets

We will often identify a set F' C N and the collection
Cr = {F,: n € N} of computable sets described by F'.

We say that F' C N is a almost disjoint, AD in brief, if

each F), is infinite, computable, and F, N F}, =* () for n # k.

Definition (Analog of almost disjointness number)

m The mass problem A is the class of sets I’ such that Cp is
maximal almost disjoint (MAD) for the computable sets.

m Namely, Cr is AD, and for each infinite computable set R,
there is n such that R N F), is infinite.
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No MAD set F'is computable

Proposition
No MAD set F'is computable.

Suppose F'is almost disjoint and computable.

Let r_; =0, and r, be the least number r > r,,_; such that
reF, -,

z<n

Then the computable set R = {rg,ry,...} shows that F' is not
maximally almost disjoint.
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The mass problem 7 of maximal towers

We say that G C N is a tower (or Cg
is a tower) if G,, is computable for each
n, and

Gni1 C° G, and G,, — G, 41 is infinite.

Definition (Analog of tower number t)

m The mass problem 7 is the class of sets G such that Cg is a
tower that is maximal in the computable sets.

m Namely, for each infinite computable set R there is n such that
R — G, is infinite.
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A and T are Medvedev equivalent
Define a Turing functional Diff by letting

Diff (G) = the set F' such that F,, = G,, — G,,41 for each n.

If G is a maximal tower then F' = Diff(G) is MAD. For, if R is
infinite computable then R — G, is infinite for some n, and hence
R N F; is infinite for some 7 < n.

Define a Turing functional Cp by

Cp(F) = the set G such that G,, = N — U F,, for each n.

<n

If Fis AD then G is a tower, and if F' is MAD then G is a

maximal tower.
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Non-low oracles uniformly compute a set in T

Theorem

T (the mass problem of maximal towers) <, NonLow.

Proof. Let x,y, z denote binary strings; we identify  with the number
1x via the binary expansion. Define a Turing functional ® for the
Medvedev reduction: ®? = G, where for each n

Gp={z:n<s:=|g|\NZ|n=x|n}
m For each n we have G,,+1 C* GG, and G,, — G,11 is infinite.

m Each G,, is computable since for large enough s the string Z! [ n
has settled.

If R C* G,, for each n, where R is an infinite set, then

Z'(k) = limye g 3>k ©(k), and hence Z' <7 R'. So if Z € NonLow then

such an R cannot be computable. Hence ®% € 7.
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C.e. MAD set by a finitary priority construction

Theorem
For each noncomputable c.e. set A, there is c.e. MAD set F' < A.

Let Vo, = W, and V5.1 = N for each e. Build an auxiliary c.e. set
S <1 A. Then let F' <r A be defined by F, = S5 U Soc1.

P,: Vo= S infinite = [S.n V| >k (n= (e, k).
i<n
At stage s we say that P, is satisfied if [S. s NV, 5| > k.
Construction.
Stage s > 0. For each n < s such that P, is not satisfied, if there is
v € Voo — U, Sis such that x > max(S. 1), * > 2n and
As| © # As_1 | x, then put (x,e) into S (i.e., put z into S,).
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Index guessable oracles
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Indices for columns of a MAD hard to compute
A characteristic index for a set M is an e such that x, = ..
Proposition

Suppose F' is maximally almost disjoint. Then )/ is not able to
compute, from input n, a characteristic index for F,.

Proof.

Assume otherwise. Then there is a computable function f such
that @i, f(n,s) is the characteristic function of F,.

Let F be defined as follows. Given n,x , compute the least s > x
such that ¢rq,).s(z) . If the value is not 0 put z into F,.

Clearly Fis computable. Since F,, =" ]3” for each n, the set Fis
MAD, contradicting the fact obtained above. 16lrks



Index guessable oracles
Definition
We call an oracle L index guessable if whenever ®Z is computable

then (/' can compute from e an index for its characteristic function.

In other words, there is a functional I'" a such that

®% is computable = I'(()'; ¢) is an index for it, i.e., ®L = o).

m it’s easy to give a direct proof that index guessability implies
lowness.

m The proposition above (Slide 16) implies that no index
guessable set computes a MAD set.

m Thus, by the permitting result above (Slide 14), a c.e., index
guessable set is computable.
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Definition (Recall)

We call an oracle L index guessable if whenever F' = ®L is
computable then () can compute from e an index for its
characteristic function.

Proposition

Suppose L is A and 1-generic. Then L is index guessable.

Proof: one notes that
Ce={r: (3p) ®L(p) # F(p)}

is not dense along L. Since L is AY, this can be used to have (/
compute an index for F'.
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Oracles not computing a MAD

So we have:

1-generic AY = index guessable = computes no MAD = low.

m AY N 1-generic is downward closed (Haught)

m We only know at present that the last arrow cannot be
reversed.

m To see this recall that any noncomputable c.e. set computes a
MAD.
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The mass problem U,

an analog of the ultrafilter number
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Definition (Analog of the ultrafilter number u)
The mass problem U consists of the sets F' such that each F, is
computable,

m [, C"F, and F,, — F,, 4 is infinite (i.e., F' is a tower).

m for each computable set R there is n such that

F,C*Ror F, C*R.

We say that F' (or, more precisely, Cr) is an ultrafilter base (UFB)
within the computable sets.

Fact
U C T, that is, each UFB is a maximal tower.
So we trivially have T <; U wia the identity reduction.
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Example of an UFB

m Take any r-maximal set C'.

m By definition of r-maximality, the computable sets R such
that R U C' is cofinite form an ultrafilter.

m Using this one can obtain an ultrafilter base Cr where
F<r0.
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Recall that each nonlow computes a maximal tower. So, by the
following, not each maximal tower computes an ultrafilter base.

Proposition (to be strengthened)
No ultrafilter base F' is computably dominated.

Proof.

Let g(n) be the least number > n in (,_,, F;. Then g < F.
Assume that there is a computable function p > ¢g. The conditions
no = 1 and nyy1 = p(ng) define a computable sequence.

So the set

= U[n% n2i+1)

is computable.
Clearly F,, Z* E and F,, Z* E for each n. So F is not an ultrafilter
base. O]
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Highness and mass problems

Our aim is to show that the degrees of ultrafilter bases coincide

with the high degrees. How do we formulate a version of this for
strong reductions?

m Let DomFcn denote the mass problem of functions A that

dominate every computable function, and also satisfy h(s) > s
for all s.

m Let Tot = {e: ¢ is total}. Note that F is high iff Tot <, F".

m The approximations to Tot are the {0, 1}-valued binary
functions f such that lim; f(e, s) = Tot(e).

Fact (Martin, morally)
DomFcn is Medvedev equivalent to
the mass problem of approximations to Tot.
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Classifying the complexity of ultrafilter bases

Theorem

The mass problem DomFcn of dominating functions
is Medvedev equivalent to

the mass problem U of ultrafilter bases.
In particular, the degrees of ultrafilter bases are exactly the high
degrees.
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Proof of DomFen <, U

Lemma

There is a uniformly computable sequence Fy, Py, ... of nonempty
I19-classes such that for every e,

m if ¢. is total, then P, contains a single element, and

m if ¢. is not total, then P, contains only bi-immune elements.

Given an ultrafilter base F' we have

¢e is total <= (3i)(3In)
[F; \ [0,n] is a subset of some X € P. or its complement]

We use this to uniformly compute from F' an approximation to Tot
in the sense of the Limit Lemma, and hence a dominating function.
See Thm. 3.6 in the CDMTCS preprint for detail.
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Proof of DomFen >, U
Let (1e)een be an effective listing of the {0, 1} valued partial

computable functions defined on an initial segment of N. Let

Ver ={z: Ye(z) = k}.

Let T'= {0, 1,2}=>°. For a € T' we enumerate in an increasing
fashion a (possibly finite) c.e. set S,. Enumeration is uniform in a.

Let Sps = [0, s). If we have defined (at stage s) the set
o =1{r0o <...<rp}, let S, contain the numbers of the form rs;.

m Let Sag = §a.
m Let S, = §a NV for k=0,1, e = |af.

27 / 32



Proof of DomFen >, U continued

Define a uniform list of Turing functionals I'. so that the sequence
(T (t))sen is nondecreasing, for each e and each oracle function h
such that h(s) > s for each s. We will let F, = {T'"(t): t € N}.

Definition of I'.. Given an oracle function A, we will write a, for
I'(s). Let ag = 0. Suppose s > 0 and a,_; has been defined.

Let a € T' be the leftmost string of length e such that there is an
T € Sop(s) With o > a,_;. Choose z least for a and let a, = z. If
there is no such « let ay, = a,_;.

Verification. Suppose h is a dominating function. Then for each e
we have F, =* S,, where « is the leftmost string of length e such
that S, is infinite.
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Co-c.e. ultrafilter bases

Recall so far we only produced a A ultrafilter base.

However, a modification of the construction above, along with a
technique from a 2001 paper on r-maximal sets by Lempp, N. and
Solomon, yields the following.

Theorem
There is a co-c.e. ultrafilter base.
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Maximally independent families in computability
Given a sequence (F,)nen, for each binary string o we write

F,= ()] En () Fu

o(i)=1 o (i)=0

We call (a set F' encoding) such a sequence independent if each set F, is
infinite.
Definition
The mass problem Z is the class of sets F' such that (F, ),y is a
family that is maximally independent, namely, it is independent,

and for each computable set R, there is ¢ such that F, C* R or
F, C* R.

Theorem
7T 1s Medvedev equivalent to DomFcn, and hence to U.
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Boolean algebras other than the computable sets

There is a AY-ultrafilter base for the Boolean algebra of the
K-trivial sets.

Modifying the argument above, such an ultrafilter base is
necessarily high.

To prove the theorem, we recall the fact by Kucera and Slaman (2009)
that there is a AJ-function h that dominates all functions that are
partial computable in some K-trivial set. We use this to modify the

construction in proof above that DomFcn >, U.

Modifying a proof of Jockusch and Stephan (nonhigh cohesive set,
1993) yields:

An oracle C' computes an ultrafilter base for the primitive recursive
sets iff C” is of PA degree relative to (.
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