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η-representations

Recall that η is the order type of the rationals.

Definition
For a set A a linear order L is said to be an η-representation of A if there is
a surjective function F : ω → A such that L has order type∑

n∈ω
η + F (n)

We say L is a strong η-representation if the function F is strictly increasing
and a increasing η-representation if F is non-decreasing. If a set A has a
computable (strong, increasing) η-representation then we say A is
(strongly, increasingly) η-representable.
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Successor and block relations

Definition
For any linear order L, SL the successor relation on L is defined by

SL(x , y) ⇐⇒ x < y ∧ (x , y) = ∅

The block relation BL is given by

BL(x , y) ⇐⇒ (x , y), (y , x) are finite

A block of size n in L is a collection x0 <L · · · <L xn−1 such that
B(y , x0)→

∨
i<n y = xi

It can be seen that SL is Π0
1(L) and BL is Σ0

2(L).
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Upper bound of η-representable sets

Theorem (Feiner, 1970)

For a linear order L the set {n : L has a block of size n} is Σ0
3 in L.

For an η-representation L of a set A we have that
A = {n : L has a block of size n}. This gives us the following.

Corollary
If a set A has a computable η-representation then A is Σ0

3.
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Upper bound of strongly η representable sets

In his thesis, Fellner proved

Theorem (Fellner, 1976)

If A has a computable strong η-representation then A is ∆0
3.

Fellner was able to prove that every Σ0
2 and Π0

2 set has a strong
η-representation. This lead him to make the make the following conjecture:

Conjecture (Fellner, 1976)

Every ∆0
3 set has a strong η-representation.
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Fellner’s conjecture is false

Theorem (Lerman, 1981)

There is a ∆0
3 set with no computable η-representation.

Lerman was able to find a subclass which always has an η-representation.

Theorem (Lerman, 1981)

If A is Σ0
3 then A⊕ ω has a computable η-representation.

This gives a characterization of the m-degrees with η-representations.

Corollary (Lerman, 1981)

Every Σ0
3 m-degree has a set with a computable η-representation.
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Degrees without computable strong η-representations

In the case of strong η-representations Harris showed that Fellner’s
conjecture does not hold even for Turing degrees.

Theorem (Harris, 2008)

There is a ∆0
3 degree that does not compute any non-computable set with

a computable strong η-representation.

Questions
What are the (strongly) η-representable sets?
What are the degrees with computable strong η-representations?
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Limitwise monotonic functions

Harris came up with a characterization of the η-representable sets. To
motivate our definitions we will consider this characterization.

Definition
A function, F : ω → ω, is limitwise monotonic if there is a computable
function, f : ω2 → ω such that F (n) = lims f (n, s) and for all n, s
f (n, s) ≤ f (n, s + 1).

So we can computably approximate the values of F from below.
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Characterization of η-representable sets

By the Limit Lemma if F is limitwise monotonic then F is ∆0
2 and hence if

A = rang(F ) then A is Σ0
2.

Theorem (Harris, 2008)
A set A is η-representable if and only if A is the range of a 0′-limitwise
monotonic function.

The construction of the η-representation, L, is done uniformly, constructing
linear orders Ln ∼= η + F (n) and taking L =

∑
n Ln. From this it can be

seen that if A is the range of a strictly increasing 0′-limitwise monotonic
function then A is strongly η-representable. However Harris showed that
this is not a characterization of the strongly η-representable sets.
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Support increasing limitwise monotonic

Katch and Turetsky modified the notion of limitwise monotonic as follows:

Definition
A function F : Q→ ω is support (strictly) increasing limitwise monotonic
function on Q if there is computable f : Q× ω → ω such that

F (q) = lims f (q, s).
For all q, s f (q, s) ≤ f (q, s + 1).
The set S := {q ∈ Q : F (q) 6= 0} has order type ω.
F � S is a (strictly) increasing.

The intuition is that members of S represent blocks of an increasing
η-representation. When we discover a new block in that η-representation
we pick a new rational representative that is between the representatives
for the blocks to the left and right.
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Characterization of increasingly η-representable sets

We define SILM0′(Q) to be the set of all A such that A is the range of a
0′-support increasing limitwise monotonic function on Q and SSILM0′(Q)
to be the set of all A such that A is the range of a 0′-support strictly
increasing limitwise monotonic function on Q.

Theorem (Katch, Turetsky, 2010)

1 A ∈ SILM0′(Q) ⇐⇒ A has a computable increasing η-representation.
2 Every ∆0

3 m-degree has a computable increasing η-representation.

3 A ∈ SSILM0′(Q) =⇒ A has a computable strong η-representation.

The converse of 3 does not hold.

Theorem (Turetsky, 2011)

There is a set A /∈ SSILM0′(Q) with a computable strong η-representation.
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Observations

Notice that both the existing characterizations involve relativizing
something to 0′. In fact they can be seen as relativizations of
characterizations of the sets with computable (increasing)
η-representation with computable successor relation.
Another observation is that in the proofs of the above
characterizations, the construction of the η-representation creates each
block separately and does not take advantage of the fact that blocks
may merge. Essentially 0′ can compute BL for the η-representation.
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η-s-representations

From the first observation we come up with the following definition.

Definition
A (strong) η-s-representation of a set A is a computable (strong)
η-representation, L, where the successor relation, SL, is also computable.

Since all existing characterizations can be seen as relativizations of
characterizations of η-s-representations the hope is that we can come up
with a characterization of the strongly η-s-representable sets and turn that
into a characterization of the strongly η-representable sets.
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Something new is needed for strong η-representations

We have a characterization of SSILM0′(Q) in terms of strong
η-representations.

Theorem

A set A is in SSILM0′(Q) if and only if there is a computable strong
η-representation with 0′-computable block relation.

This and Turetsky’s result mean that any characterization of the strongly
η-representable sets must involve constructions that allow for blocks to
merge.
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Connected approximations

The second observation leads us to the following definition.

Definition
A connected approximation to a set A is a sequence of finite functions (cn)n
with associated sequences of finite sets (An,m)m that satisfy the following:

1 rang(cn) ⊆ dom(cn+1) for all n.
2 An,0 := dom(cn), An,m+1 := cn+m(An,m).
3 The limit An,ω := limm An,m always exists.
4 A = ∪nAn,ω.

We call a connected approximation (cn)n monotonic if cn(x) ≥ x for each
n and x ∈ dom(cn) and order preserving if each cn preserves ≤.

The idea is that the elements of dom(cn) represent the sizes of blocks at
stage n of creating a strong η-representation. If cn(x) = cn(y) there the
corresponding blocks of x and y have merged at stage n + 1.
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Characterizations with connected approximations

Theorem (J-G, 2019)
For a set A we have the following characterizations.

A has a computable connected approximation if and only if A is Σ0
2.

A has a computable monotonic connected approximation if and only if
A is the range of a computable limitwise monotonic function.

A has a computable MOP connected approximation if and only if
A ∈ SILM(Q).

A has a computable MOP connected approximation where each cn is
injective if and only if A ∈ SSILM(Q).

Relativizing the middle two results we get new characterizations of
η-representable and increasingly η-representable sets.
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Characterization of sets with strong η-s-representations

Theorem (J-G, 2019)
A set A has a computable strong η-s-representation if and only if it has a
computable MOP connected approximation where each cn satisfies

ψ(n) = ∀x ∈ rang(cn)[
∑

m∈c−1n ({x})

m + n ≤ x + n]

What ψ(n) says is that blocks can merge, but the new block must have the
size larger than the sum of the merged blocks and the points between
them. The later the stage where blocks are merged, the more points there
are between blocks.
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Not a characterization of sets with strong η-representations

Relativizing give the following corollary.

Corollary
If a set A has a strong η-representation then A has a 0′-computable MOP
connected approximation where each cn satisfies

ψ(n) = ∀x ∈ rang(cn)[
∑

m∈c−1n ({x})

m + n ≤ x + n]

Unfortunately we only have one direction. The other is open.

Question
Is there a set with a 0′-computable strong η-s-representation but no
computable strong η-representation?
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Density result

Theorem (J-G, 2019)
Suppose g : ω → ω is a computable increasing function. If a set A has a
strong η-s-representation and satisfies |A ∩ g(n)| ≥ n for all n then
A ∈ SSILM(Q).

This can be relativised to give the following result characterization for
dense enough sets.

Theorem (J-G, 2019)
For a set A suppose that there is 0′-computable increasing function g such
that |A ∩ g(n)| ≥ n for all n. The following are equivalent.

A has a computable strong η-representation.
A ∈ SSILM0′(Q).
A has a 0′-computable strong η-s-representation.
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Characterization of degrees with strong η-representations

Lemma
If A is a set with a strong η-s-representation then A⊕ ω also has a strong
η-s-representation.

Relativizing this lemma and putting it together with the density result gives
us the following characterization of the degrees of sets with strong
η-representations.

Theorem (J-G, 2019)
The following coincide.

The m-degrees of sets with computable strong η-representations.
The m-degrees of sets in SSILM0′(Q).
The m-degrees of sets with 0′-computable strong η-s-representations.
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Thank you

Thank You
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