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Motivations
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Ramsey’s theorem for pairs

1 2

3 4

5 6

At a gathering of six people, at least three of them
all known each other, or all don’t know each other.Frank Ramsey, 1903–1930

rAsn : the subsets of A of size n.

Theorem (Ramsey’s theorem for pairs)

RT2
k

: For every infinite set X , for every function f : rX s2 Ñ t0, . . . , k � 1u, there is
an infinite set Y � X and an integer i   k such that f prY s2q � tiu.

0 1 2 3 � � �
f is called a coloring
X is called monochromatic



Part 1 : Motivations Part 2 : Reverse mathematics Part 3 : Devlin’s theorem Part 4 : The generalized tree theorem

A naive question

What of Ramsey’s theorem for functions f : N� NÑ t0, . . . , k � 1u ?

Let f be the following function: For any set X of size at least 2:
f ppn,mqq � 0 if n ¡ m
f ppn,mqq � 1 if n   m
f ppn,mqq � 2 if n � m

Dpn,mq P X � X such that f ppn,mqq � 0
Dpn,mq P X � X such that f ppn,mqq � 1
Dpn,mq P X � X such that f ppn,mqq � 2

But, given f : N� NÑ t0, . . . , k � 1u for any k ¡ 2:

1 Define g0 : rNs2 Ñ t0, . . . , k � 1u by g0ptn,muq � f ppn,mqq with n   m.
Apply Ramsey’s theorem to get X0 � N on which g0 is monochromatic.

2 Define g1 : rX s2 Ñ t0, . . . , k � 1u by g1ptn,muq � f ppn,mqq with n ¡ m.
Apply Ramsey’s theorem to get X1 � X0 on which g1 is monochromatic.

3 Apply the pigeonshole principle to find an infinite subset X2 � X1 such that
f ppn, nqq is always of the same color.

Conclusion : we can always reduce the number of color from k to 3.
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Taking a step back

Given:

- an infinite mathematical structure G ,
- a collection SpG q of finite substructures of G ,

does there exists l P N such that for any k ¡ l and any coloring

g : SpG q Ñ t0, . . . k � 1u

we can find an infinite substructure G 1 � G with G 1 � G , such that |gpSpG 1qq| ¤ l ?

Definition (Zucker)

Given SpG q, the minimum such number l , if it exists, is the big Ramsey degree of
SpG q in G .

- The big Ramsey degree of any sets of size 2 in any infinite set X is 1.
- The big Ramsey degree of any pair of integers in any product X � X for X

infinite is 3.

Other natural big Ramsey degrees ?
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Devlin’s theorem for singletons

Proposition (Pigeonhole’s principle for rationals)

DT1
k

: For any f : QÑ t0, . . . , k � 1u, there is an infinite set X � Q order
isomorphic to Q and an integer i   k such that f pX q � tiu.

Remark : the proposition remains true starting with any R � Q in place of Q.

Lemma

For k ¥ 2, DT1
k Ñ DT1

k�1

Lemma’s proof : Given f : QÑ t0, . . . , ku we define g : QÑ t0, . . . , k � 1u
by gpqq � minpf pqq, k � 1q. We apply DT1

k to find a monochromatic set
X0 � Q. The set X0 has at most two colors with f . We then apply DT1

2

to find a monochromatic set X1 � X0 with X1 � X0 � Q on which f is
monochromatic.

Proposition’s proof : Either there is q0   q1 such that f pQXpq0, q1qq � t0u
or for every q0   q1 there is q P pq0, q1q such that f pqq � 1. In this case we
compute X � Q which is monochromatic for f .
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Generalizing the singleton case

Definition

DTn

k
: For any f : rQsn Ñ t0, . . . , k � 1u, there is an infinite set X � Q order

isomorphic to Q and an integer i   k such that f prX snq � tiu.

DT1
2 is a theorem. Is DT2

2 ?

Let tqnunPN be any enumeration of rationals. Let

f ptqn, qmuq � 0 if n   m
� 1 otherwise

For any X � Q and any qn P X there must exists m1,m2 sufficiently large such that
qm1   qn   qm2 : DT2

2 is false.

The big Ramsey degree of pairs of rational is at least 2.
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Big ramsey degrees for finite subsets of Q

Definition

DTn

k,l : For any f : rQsn Ñ t0, . . . , k � 1u, there is an infinite set X � Q order
isomorphic to Q such that |f prX snq| ¤ l .

Theorem (Devlin)

For any n, there exists tn such that DTn
tn�1,tn is true.

Remark : for k ¡ l we have DTn
k,l Ñ DTn

k�1,l , by grouping two colors in one and
applying DTn

k,l twice if needed.

The big Ramsey degrees tn such that DTn
tn�1,tn is true are known as the odd

tangent numbers:

t1 t2 t3 t4 t5 t6 . . .

1 2 16 272 7936 353792 . . .

tn is the number of increasing labeled full binary trees with 2n � 1 vertices. To see
that, we are going to use the Milliken’s tree theorem.
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Trees

A tree is merely a set of strings.

Definition (Trees)

A tree T � 2 N is meet-closed if σ, τ P
T , their longest common prefix is in T .
We write T^ for the meet-closure of T .

Definition (Levels)

Given a tree T and σ P T , the level of σ
is the number of prefixes of σ in T . We
denote by T pnq the set of nodes of T of
level n.

Definition (Strong subtrees)

A set T � 2 N is a strong tree if it is
meet-closed and nodes of the same level in
T are on the same level in 2 N.

...

f p0q

f p0q � 1

f p1q

f p1q � 1

f p2q
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Milliken’s tree theorem for singletons

Proposition (Milliken’s tree theorem for singletons)

MT1
k

: For any f : 2 N Ñ t0, . . . , k � 1u, there is a strong subtree S � 2 N with no
dead ends such that |f pSq| � 1.

Remark : the theorem remains true starting with any strong tree T in place of 2 N.

Proof : Let f : 2 N Ñ t0, 1u. Either there exists a string σ and infinitely
many n such that f pστq � 0 for every τ of length n, or for every σ and almost
every n there is a string τ of length n such that f pστq � 1. In any case we
can computably build a monochromatic strong subtree.

This does not work for a function f : r2 Ns2 Ñ t0, . . . , k � 1u because we can define
the function f ptσ, τuq � 0 if σ, τ are incomparable and f ptσ, τuq � 1 otherwise.
Any strong subtree necessarily have comparable and incomparable strings.

Definition (ACDMP, The strong generalized tree principle)

SGTTn

k,l : For any f : r2 Nsn Ñ t0, . . . , k � 1u, there is a strong subtree S � 2 N

with no dead ends such that |f pSq| ¤ l .
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The strong generalized tree principle for pairs

We can force at least seven colors in any strong subtree with no dead ends:

These seven pictures above each represent an embedding type.

Definition (level-closure)

A set of strings S is level closed if for any σ, τ P S with |σ|   |τ |, the prefix of τ
of length |σ| is in S . We write Scl for the smallest meet-closed and level-closed tree
generated by S (the smallest strong tree containing S).

Definition (embedding types)

Two finite strong trees S0, S1 are strongly isomorphic if there is a bijection f : S0 Ñ
S1 such that σi ¨ τ Ø f pσqi ¨ f pτq for any σ, τ P S0. Embedding type are
equivalence classes of strongly isomorphic strong trees.
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Milliken’s tree theorem

Definition

Let T be a strong tree and e an embedding type. We denote by SepT q the set of
strong subtrees of T whose embedding type is e.

Let e be an embedding type.

Theorem (Milliken’s tree theorem)

MTTe
k : For any f : Sep2

 Nq Ñ t0, . . . , k � 1u be any coloring. Then there is a
strong subtree S � 2 N with no dead ends such that |f pSepSqq| � 1.

Remark : Milliken’s tree theorem is true starting with any strong tree T in place of
2N.

Corollary (ACDMPT)

SGTT2
8,7 is true and 7 is the big Ramsey degree of r2 Ns2 in strong trees.

proof : We iterate Milliken’s tree theorem seven times to make it monochro-
matic on the seven possible embedding types.
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The computational content of the Milliken tree theorem

We now focus on the following embedding types:

. . .

Definition

Let SnpT q denote SenpT q where en is the embedding type of the full tree of height
n. Let MTTn

k denotes MTTen
k .

Proposition

Let e be an embedding type of height n. Then RCA0 $ MTTn
k Ñ MTTe

k.

proof : Given a color f : SepT q Ñ t0, . . . , k � 1u we define a color g :
SenpT q Ñ t0, . . . , k � 1u by gpF q � f pF 1q where F 1 is the unique subtree of F
of embedding type e. Apply MTTn

k.
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Upper bound and lower bound of MTTn
2

Upper bound:

Theorem (ACDMP)

For every n, MTTn
2 has a ∆0

2n�1 solution and is then provable in ACA0.

Lower bound:

Proposition

Let e be an embedding type of height n. Then MTTe
k implies RTn

k. In particular for
n � 3 we have a computable coloring of Sep2

 Nq every solution of which computes
the halting problem.

Proof : We can transform a coloring of rNsn into a coloring of Sep2
Nq identi-

fying nodes with their levels.

Corollary

For any embedding type e of height ¥ 3, MTTe
2 implies ACA0.
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MTTn
2 in reverse mathematics

ACA

WKLRT22

RCA

RT3
2RT4

2
. . .

MTT3
2MTT4

2
. . .

MTT2
2

�

�

�
?

?

What about MTT2
2 ?
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The case of MTT2
2

Theorem (Following from a result of Patey)

RT2
2 does not imply MTT2

k.

Theorem (ACDMP, strong cone avoidance of MTT1
2)

For any non-computable set C , any arbitrary instance of MTT1
2 admits a solution

which does not compute C .

Theorem (ACDMP, cone avoidance of MTT2
2)

For any non-computable set C , any computable instance of MTT2
k admits a solution

which does not compute C .

Corollary (ACDMP)

MTT2
k does not imply ACA0.
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Devlin’s theorem
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Coming back to Devlin’s theorem

We saw that DT2
2 is not a theorem. Given any enumeration tqnunPN of the

rationals. Let
f ptqn, qmuq � 0 if n   m

� 1 otherwise

For any X � Q and any qn P X there must exists m1,m2 sufficiently large such that
qm1   qn   qm2 : DT2

2 is false.

Can we show that DT2
3,2 is a theorem ?

We equip 2 N with a total order isomorphic to Q : σ  Q τ if there is a prefix
τ 1 ¨ τ such that τ 10 ª τ and τ 10 ¨ σ.

0

-1 1

-2 -1/2 1/2 2

. . .
. . . . . .. . .
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Devlin embedding types

We are now interested in the two following embedding types:

Proposition (Devlin)

Given a strong tree T with no leaves, we can compute a countable anti-chain A � T
or order type Q and whose leaves generate only one of the two embedding types listed
above.

This gives rise to the concept of Devlin embedding types:

Definition (Devlin)

A Devlin embedding type of size n is the equivalence class of a finite strong tree
with n leaves σ such that:

1 Every element of σ^ is of different size.
2 Every node which is not a leaf and not branching “goes at the left”.
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Devlin embedding types and Joyce trees

Devlin types of size n can be put in bijections with Joyce trees of height n :
increasing labeled full binary trees with 2n � 1 vertices:

Here is a Devlin type of size 3 and its corresponding Joyce tree:

1

2

3

4 5

Here are 8 among the 16 Joyce trees of size 3 (the remaining cases are symmetric):

1

2

3

4 5

1

3

2

4 5

1

2

4

3 5

1

2

5

3 4

1

2

3

5 4

1

3

2

5 4

1

2

4

5 3

1

2

5

4 3
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Devlin’s theorem from Milliken’s tree theorem

Theorem (Devlin)

Given a strong tree T with no leaves, we can compute a countable anti-chain A � T
or order-type Q, among which each anti-chain of n strings always generates a Devlin
embedding type, and such that each Devlin embedding type of size n is realized by
any anti-chain B � A isomorphic to Q.

Iterating the Milliken’s tree theorem on each Devlin embedding type:

Corollary (Devlin)

Let dtn be the number of Devlin type of size n. Then DTn
dtn�1,dtn

is a theorem and
DTn

dtn,dtn�1 is false : dtn is the big Ramsey degree of the set of n rationals.

Corollary (Devlin)

For any n, DTn
dtn�1,dtn

is provable in ACA0.

Does DT2
3,2 admits cone avoidance ?
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The Devlin’s theorem in reverse mathematics

DT2
3,2 is a consequence of MTTe

3 for e among the two following embedding types:

These embedding types are of size three and we can design a computable instance
of MTTe

3 every solution of which computes ∅1 for each of them.

We can do something similar for DT2
3,2

Proposition (ACDMP)

There is a computable instance of DT2
3,2 every solution of which computes the halting

problem (it can also be done for DT2
4,3).

Corollary (ACDMP)

For every n ¥ 2, DTn
dtn�1,dtn

is equivalent to ACA0.
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The generalized tree
theorem
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The generalized tree theorem

We come back to the strong generalized tree principles:

Definition (The strong generalized tree principles)

SGTTn

k,l : For any f : r2 Nsn Ñ t0, . . . , k � 1u, there is a strong subtree S � 2 N

with no dead ends such that |f pT q| ¤ l .

Definition

Let esTTpnq be the number of embedding types generated by n strings.

We have esTTp1q � 1 and esTTp2q � 7.

Proposition (ACDMP)

SGTT2
8,7 is provable in ACA0 and SGTT2

7,6 is false. 7 is the big Ramsey degree of
pairs of string with respect to strong trees with no leaves.
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A refinement of embedding types : the tuple types

In general SGTTn
esTTpnq�1,esTTpnq

is not a theorem : two set of strings may generate
the same embedding type, while the role of each string in the generation of this
embedding type is different:

Two ways of generating the same embedding type with three strings.

Definition (Tuple types)

A tuple type is the equivalence class of the following equivalence relation defined
on tuples of strings :

σ is equivalent to τ if there is a strong bijection between the strong tree generated
by σ and the one generated by τ , which maps elements of σ to elements of τ .

Let tsTTpnq be the number of tuple types generated by n strings.
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The generalized tree theorem

Theorem (ACDMP)

SGTTn
tsTTpnq�1,tsTTpnq

is provable in ACA0 and SGTTn
tsTTpnq,tsTTpnq�1 is false.

0 1 2 3 4 . . .

esTTpnq 1 1 7 345 136949 . . .
tsTTpnq 1 1 7 369 145215 . . .

These sequences have been obtained via brute force computation and do not appear
on OEIS, The On-Line Encyclopedia of Integer Sequences.

ñ they seem to be new natural combinatorial sequences.



Part 1 : Motivations Part 2 : Reverse mathematics Part 3 : Devlin’s theorem Part 4 : The generalized tree theorem

The tree theorem

Definition (Chubb, Hirst, McNichol)

TTn

k
: for any coloring of the n-tuples of comparable strings with k colors, there

exists a – not necessarily strong – monochromatic perfect tree.

Theorem (Chubb, Hirst, McNichol)

TTn
k is provable in ACA0.

Definition (ACDMP)

GTTn

k,l : for any coloring of the n-tuples of strings with k colors, there exists a – not
necessarily strong – perfect tree using at most l colors.

Definition (ACDMP)

An ACDMP type is a tuple type generated by a tuple σ such that:

1 every string of σ is not in σ^zσ.
2 every string of σ^ is of different length.
3 every node in σcl which is not a leaf and not branching “goes at the left”.
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The generalized tree theorem

Theorem (ACDMP)

Inside every strong perfect tree T we can compute with the help of T a perfect
(non-strong) subtree S whose every tuple type is an ACDMP tuple type and such
that every perfect subtree R � S realizes every ACDMP tuple type.

Definition (ACDMP)

Let tTTpnq be the number of ACDMP tuple type and eTTpnq be the number of
embedding type they belong to.

Theorem (ACDMP)

GTTn
tTTpnq�1,tTTpnq

is a theorem provable in ACA0 whereas GTTn
tTTpnq,tTTpnq�1 is

false.

Corollary (Chubb, Hirst, McNichol)

TTn
k is a theorem provable in ACA0 for every n, k .

The reason is that there is only one ACDMP tuple type of size n generated by
comparable strings.
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Some open questions

The first values of our combinatorial sequences are:

0 1 2 3 4 . . .

esTTpnq 1 1 7 345 136949 . . .
tsTTpnq 1 1 7 369 145215 . . .
eTTpnq 1 1 7 27 561 . . .
tTTpnq 1 1 7 29 635 . . .

None of them appear on The On-Line Encyclopedia of Integer Sequences.

Question

Can any of these sequence be defined inductively by a simple closed formula ? what
is the computational complexity of computing any of them ?

Question

Does every instance of MTTn
k admits a ∆0

n�1 solution (we only have ∆0
2n�1) ?

Question

Does MTT2
2 implies WKL0 ?
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