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Ramsey's theorem for pairs

At a gathering of six people, at least three of them
Frank Ramsey, 1903-1930 all known each other, or all don't know each other.

‘ [A]" : the subsets of A of size n. ‘

Theorem (Ramsey’s theorem for pairs)

RTi : For every infinite set X, for every function f : [X]?> — {0, ..., k — 1}, there is
an infinite set Y © X and an integer i < k such that f([Y]?) = {i}.

f is called a coloring
X is called monochromatic
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A naive question

What of Ramsey's theorem for functions f : N x N — {0,...,k -1} ?

Let f be the following function: | For any set X of size at least 2:
f((n,m)) = 0 ifn>m 3(n,m) € X x X such that f((n,m)) =0
f((n,m)) = 1 ifn<m 3(n,m) € X x X such that f((n,m)) =1
f((n,m) = 2 ifn=m 3(n, m) € X x X such that f((n,m)) =2

[ But, given f : N x N — {0,..., k — 1} for any k > 2: ]

Define go : [N]? — {0,..., k — 1} by go({n, m}) = f((n, m)) with n < m.
Apply Ramsey's theorem to get Xy © N on which gg is monochromatic.
Define g1 : [X]? — {0,...,k — 1} by gi({n, m}) = f((n, m)) with n > m.

Apply Ramsey's theorem to get X; € Xp on which gy is monochromatic.

Apply the pigeonshole principle to find an infinite subset X, € Xj such that
f((n, n)) is always of the same color.

Conclusion : we can always reduce the number of color from k to 3.
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Taking a step back

Given:

- an infinite mathematical structure G,
- a collection S(G) of finite substructures of G,

does there exists / € N such that for any k > [ and any coloring
g:8(G)—>{0,...k—1}

we can find an infinite substructure G’ € G with G’ = G, such that |g(S(G"))| <17

Definition (Zucker)

Given S(G), the minimum such number /, if it exists, is the big Ramsey degree of
S(G) in G.

- The big Ramsey degree of any sets of size 2 in any infinite set X is 1.
- The big Ramsey degree of any pair of integers in any product X x X for X
infinite is 3.

[ Other natural big Ramsey degrees ? ]
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Devlin's theorem for singletons

Proposition (Pigeonhole’s principle for rationals)

DTII( : Forany f:Q— {0,...,k —1}, there is an infinite set X < Q order
isomorphic to Q and an integer i < k such that f(X) = {i}.

Remark : the proposition remains true starting with any R = Q in place of Q.

For k >2, DT} — DT},

Lemma’s proof : Given f : Q — {0,..., k} we define g: Q — {0,...,k—1}
by g(q) = min(f(q),k —1). We apply DT} to find a monochromatic set
Xo = Q. The set Xp has at most two colors with f. We then apply DT}
to find a monochromatic set X; € Xy with X; = Xg = Q on which f is
monochromatic.

Proposition’s proof : Either there is gy < g1 such that f(Q n (qo, g1)) = {0}
or for every qo < g1 there is g € (qo, g1) such that f(g) = 1. In this case we
compute X = Q which is monochromatic for f.
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Generalizing the singleton case

Definition
DT} : Forany f: [Q]" — {0,..., k — 1}, there is an infinite set X < Q order
isomorphic to Q and an integer i < k such that f([X]") = {i}.

[ DT} is a theorem. Is DT3 ? ]

Let {gn}nen be any enumeration of rationals. Let

f({qm qm})

Oifn<m
1 otherwise

For any X = Q and any g, € X there must exists my, my sufficiently large such that
Gmy < n < Gm, : DT3 is false.

[ The big Ramsey degree of pairs of rational is at least 2. ]
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Big ramsey degrees for finite subsets of

Definition
DTy, : Forany f: [Q]" — {0,..., k — 1}, there is an infinite set X S Q order
isomorphic to Q such that |f([X]")| < /.

Theorem (Devlin)

For any n, there exists t, such that DTy .4, is true.

Remark : for k > | we have DT}, — DT}, ;, by grouping two colors in one and
applying DT} ; twice if needed.

The big Ramsey degrees t, such that DT}, ., , is true are known as the odd
tangent numbers:

t1 |t | t3 ty ts te
1|2 16| 272 | 7936 | 353792

t, is the number of increasing labeled full binary trees with 2n — 1 vertices. To see
that, we are going to use the Milliken’s tree theorem.
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Trees

A tree is merely a set of strings.

Definition (Trees)

A tree T < 2<N is meet-closed if 0,7 €
T, their longest common prefix is in T.
We write T for the meet-closure of T.

Definition (Levels)

Given a tree T and o € T, the level of o
is the number of prefixes of o in T. We
denote by T(n) the set of nodes of T of
level n.

Definition (Strong subtrees)

A set T < 2<N is a strong tree if it is
meet-closed and nodes of the same level in
T are on the same level in 2<N,
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Milliken's tree theorem for singletons

Proposition (Milliken's tree theorem for singletons)

MT}( : Forany f:2<N — {0,..., k — 1}, there is a strong subtree S < 2<N with no
dead ends such that |f(S)| = 1.

Remark : the theorem remains true starting with any strong tree T in place of 2<N.

Proof : Let £ : 2<N — {0,1}. Either there exists a string ¢ and infinitely
many n such that f(o7) = 0 for every 7 of length n, or for every o and almost
every n there is a string 7 of length n such that f(o7) = 1. In any case we
can computably build a monochromatic strong subtree.

This does not work for a function f : [2<N]2 — {0,..., k — 1} because we can define
the function f({o,7}) = 0 if o, 7 are incomparable and f ({0, 7}) = 1 otherwise.
Any strong subtree necessarily have comparable and incomparable strings.

Definition (ACDMP, The strong generalized tree principle)

SGTTE , : Forany f: [2<N]" — {0,..., k — 1}, there is a strong subtree S < 2<N
with no dead ends such that |f(S)| < /.
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The strong generalized tree principle for pairs

[ We can force at least seven colors in any strong subtree with no dead ends:

vxxﬁ&f\f@

These seven pictures above each represent an embedding type.

Definition (level-closure)

A set of strings S is level closed if for any 0,7 € S with |o| < |7|, the prefix of 7
of length || is in S. We write S for the smallest meet-closed and level-closed tree
generated by S (the smallest strong tree containing S).

v

Definition (embedding types)
Two finite strong trees Sp, S1 are strongly isomorphic if there is a bijection f : Sp —
S1 such that oi < 7 © f(0)i < f(7) for any 0,7 € Sp. Embedding type are

equivalence classes of strongly isomorphic strong trees.

4
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Milliken's tree theorem

Definition
Let T be a strong tree and ¢ an embedding type. We denote by S.(T) the set of
strong subtrees of T whose embedding type is ¢.

Let ¢ be an embedding type.

Theorem (Milliken's tree theorem)

MTTE : For any f : S.(2<N) — {0,...,k — 1} be any coloring. Then there is a
strong subtree S € 2<N with no dead ends such that |f(S.(S))| = 1.

Remark : Milliken's tree theorem is true starting with any strong tree T in place of
2N,

Corollary (ACDMPT)

SGTT; ; is true and 7 is the big Ramsey degree of [2<N]? in strong trees.

proof : We iterate Milliken's tree theorem seven times to make it monochro-
matic on the seven possible embedding types.
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The computational content of the Milliken tree theorem

We now focus on the following embedding types:

oV

Let Sp(T) denote S.,(T) where ¢, is the embedding type of the full tree of height
n. Let MTT}]. denotes MTT}".

Proposition
Let ¢ be an embedding type of height n. Then RCAgy - MTT} — MTTj.

proof : Given a color f : S(T) — {0,...,k — 1} we define a color g :
Se,(T) = {0,...,k—1} by g(F) = f(F') where F' is the unique subtree of F
of embedding type ¢. Apply MTT}.

Definition
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Upper bound and lower bound of MTT%

Upper bound:

Theorem (ACDMP)
For every n, MTT% has a A, _; solution and is then provable in ACA,.

Lower bound:

Proposition

Let ¢ be an embedding type of height n. Then MTT} implies RT}. In particular for
n = 3 we have a computable coloring of S.(2<N) every solution of which computes
the halting problem.

Proof : We can transform a coloring of [N]” into a coloring of S,(2Y) identi-
fying nodes with their levels.

For any embedding type ¢ of height > 3, MTT$ implies ACAyp.
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MTT? in reverse mathematics

[ What about MTT% ? ]
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The case of MTT3

Theorem (Following from a result of Patey)

RT% does not imply MTTIQ(.

Theorem (ACDMP, strong cone avoidance of MTT3

For any non-computable set C, any arbitrary instance of MTT3 admits a solution
which does not compute C.

Theorem (ACDMP, cone avoidance of MTT3)

For any non-computable set C, any computable instance of MTTﬁ admits a solution
which does not compute C.

Corollary (ACDMP)
MTTﬁ does not imply ACAy.
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Coming back to Devlin's theorem

We saw that DT3 is not a theorem. Given any enumeration {gn}nen of the

rationals. Let )
f({gn,gm}) = O0ifn<m
= 1 otherwise

For any X =~ Q and any g, € X there must exists my, my sufficiently large such that
Gmy < Gn < Gm, : DT3 is false.

[ Can we show that DT}, is a theorem ? ]

We equip 2<N with a total order isomorphic to Q : & <q 7 if there is a prefix
7' < 7 such that 7’0 £ 7 and 70 < 0.
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Devlin embedding types

We are now interested in the two following embedding types:

Proposition (Devlin)

Given a strong tree T with no leaves, we can compute a countable anti-chain A< T
or order type QQ and whose leaves generate only one of the two embedding types listed
above.

This gives rise to the concept of Devlin embedding types:

Definition (Devlin)
A Devlin embedding type of size n is the equivalence class of a finite strong tree
with n leaves & such that:

Every element of ” is of different size.
Every node which is not a leaf and not branching “goes at the left”.
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Devlin embedding types and Joyce trees

Devlin types of size n can be put in bijections with Joyce trees of height n :
increasing labeled full binary trees with 2n — 1 vertices:

Here is a Devlin type of size 3 and its corresponding Joyce tree:

S

Here are 8 among the 16 Joyce trees of size 3 (the remalnmg cases are symmetric):

XXX X
XY
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Devlin's theorem from Milliken's tree theorem

Theorem (Devlin)

Given a strong tree T with no leaves, we can compute a countable anti-chain A< T
or order-type Q, among which each anti-chain of n strings always generates a Devlin
embedding type, and such that each Devlin embedding type of size n is realized by
any anti-chain B < A isomorphic to Q.

Iterating the Milliken's tree theorem on each Devlin embedding type:

Corollary (Devlin)

Let dt, be the number of Devlin type of size n. Then DTSth,dtn is a theorem and

DTq, at._1 /s false : dty is the big Ramsey degree of the set of n rationals.

Corollary (Devlin)

For any n, DTq, . 4 is provable in ACAg.

[ Does DTg,Q admits cone avoidance ? ]
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The Devlin's theorem in reverse mathematics

DT‘%,2 is a consequence of MTT for ¢ among the two following embedding types:

These embedding types are of size three and we can design a computable instance
of MTT every solution of which computes ()" for each of them.

We can do something similar for DT3 ,

Proposition (ACDMP)

There is a computable instance of DT§’2 every solution of which computes the halting
problem (it can also be done for DT ;).

Corollary (ACDMP)

For every n > 2, DTSth,dtn is equivalent to ACAy.
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The generalized tree theorem

We come back to the strong generalized tree principles:

Definition (The strong generalized tree principles)

SGTTj , : Forany f: [2<N]7 - {0,..., k — 1}, there is a strong subtree S < 2<N
with no dead ends such that |f(T)| < /.

VVEANVEVIAVEY

Definition

Let esrp(n) be the number of embedding types generated by n strings.

We have esrr(1) =1 and espr(2) = 7.

Proposition (ACDMP)

SGTT§,7 is provable in ACAq and SGTT%6 is false. 7 is the big Ramsey degree of
pairs of string with respect to strong trees with no leaves.
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A refinement of embedding types : the tuple types

In general SGTT;TT(n)H evrr(n) is not a theorem : two set of strings may generate
the same embedding type, while the role of each string in the generation of this

embedding type is different:

Two ways of generating the same embedding type with three strings.

Definition (Tuple types)

A tuple type is the equivalence class of the following equivalence relation defined
on tuples of strings :

7 is equivalent to 7 if there is a strong bijection between the strong tree generated
by @ and the one generated by 7, which maps elements of & to elements of 7.

Let tspr(n) be the number of tuple types generated by n strings.
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The generalized tree theorem

Theorem (ACDMP)
SGTT? n) is provable in ACAgy and SGTT? m-1 is false.

torr(n)+1,tsr( torr (), tsrr(

0012 3 4
err(n) [1 1 7 345 136949
terr(n) |11 7 369 145215

These sequences have been obtained via brute force computation and do not appear
on OEIS, The On-Line Encyclopedia of Integer Sequences.

= they seem to be new natural combinatorial sequences.
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The tree theorem

Definition (Chubb, Hirst, McNichol)

TTjy : for any coloring of the n-tuples of comparable strings with k colors, there
exists a — not necessarily strong — monochromatic perfect tree.

Theorem (Chubb, Hirst, McNichol)
TT}, is provable in ACAq.

Definition (ACDMP)

GTTy , : for any coloring of the n-tuples of strings with k colors, there exists a — not
necessarily strong — perfect tree using at most / colors.

Definition (ACDMP)

An ACDMP type is a tuple type generated by a tuple & such that:

every string of @ is not in 7*\7.
every string of " is of different length.
every node in ¢ which is not a leaf and not branching “goes at the left”.

\
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The generalized tree theorem

Theorem (ACDMP)

Inside every strong perfect tree T we can compute with the help of T a perfect
(non-strong) subtree S whose every tuple type is an ACDMP tuple type and such
that every perfect subtree R € S realizes every ACDMP tuple type.

Definition (ACDMP)

Let tpr(n) be the number of ACDMP tuple type and epr(n) be the number of
embedding type they belong to.

Theorem (ACDMP)

GTT?TT(")+1¢TT(“)
false.

n

trr(n),tro(n)—1 'S

is a theorem provable in ACAy whereas GTT

Corollary (Chubb, Hirst, McNichol)
TT} is a theorem provable in ACAq for every n, k.

The reason is that there is only one ACDMP tuple type of size n generated by
comparable strings.
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Some open questions

The first values of our combinatorial sequences are:

01 2 3 4
err(n) |1 1 7 345 136949
tsrr(n) |1 1 7 369 145215
err(n) |1 1 7 27 561
tTT(n) 117 29 635

None of them appear on The On-Line Encyclopedia of Integer Sequences.

Can any of these sequence be defined inductively by a simple closed formula ? what
is the computational complexity of computing any of them 7

Does every instance of MTT}! admits a Ag+1 solution (we only have A9 ;) ?

Does MTT2 implies WKL ?
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