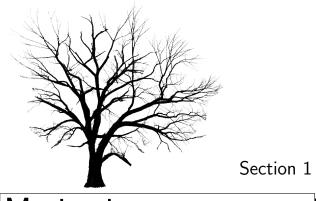
The computational content of Milliken's tree theorem

Benoit Monin

Joint work with:

- Paul-Elliot Angles d'Auriac
- Peter Cholak
- Damir Dzhafarov
- Ludovic Patey

During the "Research in Paris program"



Motivations

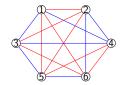
Part 2 : Reverse mathematics

Part 3 : Devlin's theorem

Part 4 : The generalized tree theorem 0000000

Ramsey's theorem for pairs

Frank Ramsey, 1903–1930

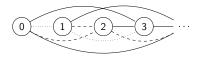


At a gathering of six people, at least three of them all known each other, or all don't know each other.

 $[A]^n$: the subsets of A of size n.

Theorem (Ramsey's theorem for pairs)

 \mathbf{RT}_{k}^{2} : For every infinite set X, for every function $f : [X]^{2} \rightarrow \{0, \dots, k-1\}$, there is an infinite set $Y \subseteq X$ and an integer i < k such that $f([Y]^{2}) = \{i\}$.



f is called a **coloring** *X* is called **monochromatic**

Part 1 : Motivations 00●00000000	Part 2 : Reverse mathematics	Part 3 : Devlin's theorem	Part 4 : The generalized tree theorem
A naive quest	ion		

What of Ramsey's theorem for functions $f : \mathbb{N} \times \mathbb{N} \to \{0, \dots, k-1\}$?

Let f be the following function: f((n,m)) = 0 if n > m f((n,m)) = 1 if n < m f((n,m)) = 2 if n = mFor any set X of size at least 2: $\exists (n,m) \in X \times X$ such that f((n,m)) = 0 $\exists (n,m) \in X \times X$ such that f((n,m)) = 1 $\exists (n,m) \in X \times X$ such that f((n,m)) = 2

But, given $f : \mathbb{N} \times \mathbb{N} \to \{0, \dots, k-1\}$ for any k > 2:

- Define $g_0 : [\mathbb{N}]^2 \to \{0, ..., k-1\}$ by $g_0(\{n, m\}) = f((n, m))$ with n < m. Apply Ramsey's theorem to get $X_0 \subseteq \mathbb{N}$ on which g_0 is monochromatic.
- 2 Define $g_1 : [X]^2 \to \{0, \dots, k-1\}$ by $g_1(\{n, m\}) = f((n, m))$ with n > m. Apply Ramsey's theorem to get $X_1 \subseteq X_0$ on which g_1 is monochromatic.
- **B** Apply the pigeonshole principle to find an infinite subset $X_2 \subseteq X_1$ such that f((n, n)) is always of the same color.

Conclusion : we can always reduce the number of color from k to 3.

Part 1 : Motivations	Part 2 : Reverse mathematics	Part 3 : Devlin's theorem 000000	Part 4 : The generalized tree theorem
Taking a step	back		

Given:

- an infinite mathematical structure G,
- a collection $\mathcal{S}(G)$ of finite substructures of G,

does there exists $I \in \mathbb{N}$ such that for any k > I and any coloring

$$g: \mathcal{S}(G) \rightarrow \{0, \ldots k-1\}$$

we can find an infinite substructure $G' \subseteq G$ with $G' \cong G$, such that $|g(\mathcal{S}(G'))| \leq l$?

Definition (Zucker)

Given S(G), the minimum such number *I*, if it exists, is the **big Ramsey degree** of S(G) in *G*.

- The big Ramsey degree of any sets of size 2 in any infinite set X is 1.
- The big Ramsey degree of any pair of integers in any product $X \times X$ for X infinite is 3.

Other natural big Ramsey degrees ?

Part 1 : Motivations	Part 2 : Reverse mathematics	Part 3 : Devlin's theorem 000000	Part 4 : The generalized tree theorem
Devlin's theor	em for singletons		

Proposition (Pigeonhole's principle for rationals)

 \mathbf{DT}_k^1 : For any $f: \mathbb{Q} \to \{0, \dots, k-1\}$, there is an infinite set $X \subseteq \mathbb{Q}$ order isomorphic to \mathbb{Q} and an integer i < k such that $f(X) = \{i\}$.

Remark : the proposition remains true starting with any $R \cong \mathbb{Q}$ in place of \mathbb{Q} .

Lemma

For $k \ge 2$, $\mathrm{DT}_k^1 \to \mathrm{DT}_{k+1}^1$

Lemma's proof : Given $f : \mathbb{Q} \to \{0, \ldots, k\}$ we define $g : \mathbb{Q} \to \{0, \ldots, k-1\}$ by $g(q) = \min(f(q), k - 1)$. We apply DT_k^1 to find a monochromatic set $X_0 \cong \mathcal{Q}$. The set X_0 has at most two colors with f. We then apply DT_2^1 to find a monochromatic set $X_1 \subseteq X_0$ with $X_1 \cong X_0 \cong \mathcal{Q}$ on which f is monochromatic.

Proposition's proof : Either there is $q_0 < q_1$ such that $f(\mathbb{Q} \cap (q_0, q_1)) = \{0\}$ or for every $q_0 < q_1$ there is $q \in (q_0, q_1)$ such that f(q) = 1. In this case we compute $X \cong \mathbb{Q}$ which is monochromatic for f.

Part 1 : Motivations	Part 2 : Reverse mathematics	Part 3 : Devlin's theorem 000000	Part 4 : The generalized tree theorem
Generalizing t	he singleton case		

Definition

 \mathbf{DT}_{k}^{n} : For any $f : [\mathbb{Q}]^{n} \to \{0, \dots, k-1\}$, there is an infinite set $X \subseteq \mathbb{Q}$ order isomorphic to \mathbb{Q} and an integer i < k such that $f([X]^{n}) = \{i\}$.

 DT_2^1 is a theorem. Is DT_2^2 ?

Let $\{q_n\}_{n \in \mathbb{N}}$ be any enumeration of rationals. Let

$$f(\{q_n, q_m\}) = 0 \text{ if } n < m$$

= 1 otherwise

For any $X \cong \mathbb{Q}$ and any $q_n \in X$ there must exists m_1, m_2 sufficiently large such that $q_{m_1} < q_n < q_{m_2}$: DT_2^2 is false.

The big Ramsey degree of pairs of rational is at least 2.

 Part 1: Motivations
 Part 2: Reverse mathematics
 Part 3: Devlin's theorem
 Part 4: The generalized tree theorem

 Object
 Object
 Object
 Object
 Object

 Big ramsey degrees for finite subsets of Q
 Object
 Object
 Object

Definition

 $\mathbf{DT}_{k,l}^n$: For any $f: [\mathbb{Q}]^n \to \{0, \dots, k-1\}$, there is an infinite set $X \subseteq \mathbb{Q}$ order isomorphic to \mathbb{Q} such that $|f([X]^n)| \leq l$.

Theorem (Devlin)

For any n, there exists t_n such that DT_{t_n+1,t_n}^n is true.

Remark : for k > l we have $DT_{k,l}^n \to DT_{k+1,l}^n$, by grouping two colors in one and applying $DT_{k,l}^n$ twice if needed.

The big Ramsey degrees t_n such that DT_{t_n+1,t_n}^n is true are known as the *odd tangent numbers*:

Γ	t_1	t ₂	t ₃	t ₄	t ₅	t ₆	
	1	2	16	272	7936	353792	

 t_n is the number of increasing labeled full binary trees with 2n - 1 vertices. To see that, we are going to use the **Milliken's tree theorem**.

Part 1 : Motivations 0000000000000	Part 2 : Reverse mathematics	Part 3 : Devlin's theorem	Part 4 : The generalized tree theorem
Trees			

A tree is merely a set of strings.

Definition (Trees)

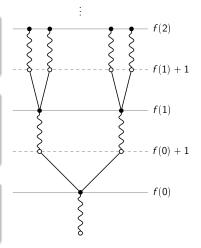
A tree $T \subseteq 2^{<\mathbb{N}}$ is **meet-closed** if $\sigma, \tau \in T$, their longest common prefix is in T. We write T^{\wedge} for the meet-closure of T.

Definition (Levels)

Given a tree T and $\sigma \in T$, **the level** of σ is the number of prefixes of σ in T. We denote by T(n) the set of nodes of T of level n.

Definition (Strong subtrees)

A set $T \subseteq 2^{<\mathbb{N}}$ is a **strong tree** if it is meet-closed and nodes of the same level in T are on the same level in $2^{<\mathbb{N}}$.



 Part 1: Motivations
 Part 2: Reverse mathematics
 Part 3: Devlin's theorem
 Part 4: The generalized tree theorem

 00000000000
 00000
 00000
 00000
 00000
 00000

 Milliken's tree theorem for singletons
 1
 1
 1
 1
 1

Proposition (Milliken's tree theorem for singletons)

 $\operatorname{MT}_{\mathbf{k}}^{1}$: For any $f: 2^{<\mathbb{N}} \to \{0, \dots, k-1\}$, there is a strong subtree $S \subseteq 2^{<\mathbb{N}}$ with no dead ends such that |f(S)| = 1.

Remark : the theorem remains true starting with any strong tree T in place of $2^{<\mathbb{N}}$

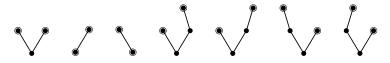
Proof : Let $f : 2^{<\mathbb{N}} \to \{0, 1\}$. Either there exists a string σ and infinitely many n such that $f(\sigma\tau) = 0$ for every τ of length n, or for every σ and almost every n there is a string τ of length n such that $f(\sigma\tau) = 1$. In any case we can computably build a monochromatic strong subtree.

This does not work for a function $f : [2^{<\mathbb{N}}]^2 \to \{0, \ldots, k-1\}$ because we can define the function $f(\{\sigma, \tau\}) = 0$ if σ, τ are incomparable and $f(\{\sigma, \tau\}) = 1$ otherwise. Any strong subtree necessarily have comparable and incomparable strings.

Definition (ACDMP, The strong generalized tree principle)

 $\operatorname{SGTT}_{k,l}^{n}$: For any $f : [2^{<\mathbb{N}}]^{n} \to \{0, \dots, k-1\}$, there is a strong subtree $S \subseteq 2^{<\mathbb{N}}$ with no dead ends such that $|f(S)| \leq l$.

We can force at least **seven** colors in any strong subtree with no dead ends:



These seven pictures above each represent an embedding type.

Definition (level-closure)

A set of strings S is **level closed** if for any $\sigma, \tau \in S$ with $|\sigma| < |\tau|$, the prefix of τ of length $|\sigma|$ is in S. We write S^{cl} for the smallest meet-closed and level-closed tree generated by S (the smallest strong tree containing S).

Definition (embedding types)

Two finite strong trees S_0 , S_1 are **strongly isomorphic** if there is a bijection $f : S_0 \rightarrow S_1$ such that $\sigma i \leq \tau \leftrightarrow f(\sigma)i \leq f(\tau)$ for any $\sigma, \tau \in S_0$. **Embedding type** are equivalence classes of strongly isomorphic strong trees.

Part 1 : Motivations 0000000000●	Part 2 : Reverse mathematics	Part 3 : Devlin's theorem	Part 4 : The generalized tree theorem
Milliken's tree	theorem		

Definition

Let T be a strong tree and \mathfrak{e} an embedding type. We denote by $\mathcal{S}_{\mathfrak{e}}(T)$ the set of strong subtrees of T whose embedding type is \mathfrak{e} .

Let \mathfrak{e} be an embedding type.

Theorem (Milliken's tree theorem)

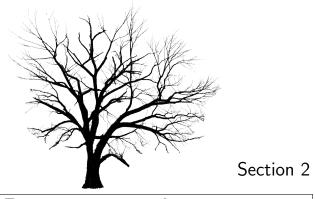
$$\begin{split} \mathbf{MTT}^{\mathfrak{e}}_{\mathbf{k}}: \mbox{ For any } f: \mathcal{S}_{\mathfrak{e}}(2^{<\mathbb{N}}) \to \{0,\ldots,k-1\} \mbox{ be any coloring. Then there is a strong subtree } S \subseteq 2^{<\mathbb{N}} \mbox{ with no dead ends such that } |f(\mathcal{S}_{\mathfrak{e}}(S))| = 1. \end{split}$$

Remark : Milliken's tree theorem is true starting with any strong tree ${\mathcal T}$ in place of $2^{\mathbb{N}}.$

Corollary (ACDMPT)

 ${\bf SGTT}^2_{8,7}$ is true and 7 is the big Ramsey degree of $[2^{<\mathbb{N}}]^2$ in strong trees.

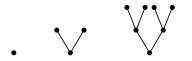
proof : We iterate Milliken's tree theorem seven times to make it monochromatic on the seven possible embedding types.



Reverse mathematics

Part 1 : Motivations	Part 2 : Reverse mathematics 0000	Part 3 : Devlin's theorem 000000	Part 4 : The generalized tree theorem
The computa	tional content of the	Milliken tree theo	rem

We now focus on the following embedding types:



Definition

Let $S_n(T)$ denote $S_{\mathfrak{e}_n}(T)$ where \mathfrak{e}_n is the embedding type of the full tree of height n. Let MTT_k^n denotes $\mathrm{MTT}_k^{\mathfrak{e}_n}$.

. . .

Proposition

Let \mathfrak{e} be an embedding type of height n. Then $\operatorname{RCA}_0 \vdash \operatorname{MTT}_k^n \to \operatorname{MTT}_k^{\mathfrak{e}}$.

proof : Given a color $f : S_{\mathfrak{e}}(T) \to \{0, \dots, k-1\}$ we define a color $g : S_{\mathfrak{e}_n}(T) \to \{0, \dots, k-1\}$ by g(F) = f(F') where F' is the unique subtree of F of embedding type \mathfrak{e} . Apply MTT_k^n .

Part 1 : Motivations	Part 2 : Reverse mathematics	Part 3 : Devlin's theorem	Part 4 : The generalized tree theorem
Upper bound	and lower bound of	MTT ⁿ ₂	
	U	pper bound:	

Theorem (ACDMP)

For every n, MTT_2^n has a Δ^0_{2n-1} solution and is then provable in ACA_0 .

Lower bound:

Proposition

Let $\mathfrak e$ be an embedding type of height n. Then $\mathrm{MTT}_k^\mathfrak e$ implies RT_k^n . In particular for n=3 we have a computable coloring of $\mathcal S_\mathfrak e(2^{<\mathbb N})$ every solution of which computes the halting problem.

Proof: We can transform a coloring of $[\mathbb{N}]^n$ into a coloring of $\mathcal{S}_{\mathfrak{e}}(2^\mathbb{N})$ identifying nodes with their levels.

Corollary

For any embedding type \mathfrak{e} of height ≥ 3 , $MTT_2^{\mathfrak{e}}$ implies ACA_0 .

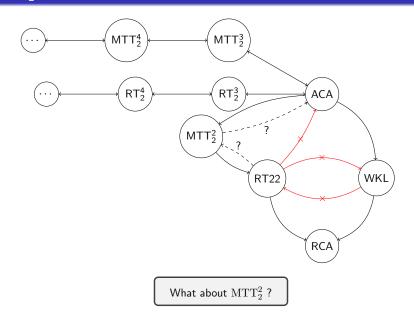
Part 1 : Motivations

Part 2 : Reverse mathematics 00000

Part 3 : Devlin's theorem

Part 4 : The generalized tree theorem 0000000

MTT_2^n in reverse mathematics



Part 1 : Motivations	Part 2 : Reverse mathematics	Part 3 : Devlin's theorem	Part 4 : The generalized tree theorem
The case of \mathbb{N}	ATT_2^2		

Theorem (Following from a result of Patey)

 RT_2^2 does not imply MTT_k^2 .

Theorem (ACDMP, strong cone avoidance of MTT_2^1)

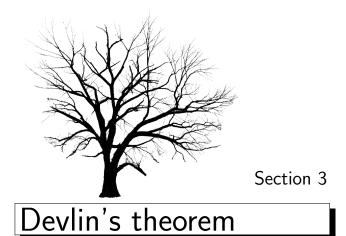
For any non-computable set C, any arbitrary instance of MTT_2^1 admits a solution which does not compute C.

Theorem (ACDMP, cone avoidance of MTT_2^2)

For any non-computable set C, any computable instance of MTT^2_k admits a solution which does not compute C.

Corollary (ACDMP)

 MTT_k^2 does not imply ACA_0 .



Part 1 : Motivations	Part 2 : Reverse mathematics	Part 3 : Devlin's theorem o●oooo	Part 4 : The generalized tree theorem
Coming back	to Devlin's theorem		

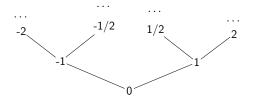
We saw that DT_2^2 is not a theorem. Given any enumeration $\{q_n\}_{n\in\mathbb{N}}$ of the rationals. Let

 $f(\{q_n, q_m\}) = 0 \text{ if } n < m$ = 1 otherwise

For any $X \cong \mathbb{Q}$ and any $q_n \in X$ there must exists m_1, m_2 sufficiently large such that $q_{m_1} < q_n < q_{m_2}$: DT_2^2 is false.

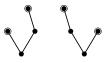
Can we show that $DT_{3,2}^2$ is a theorem ?

We equip $2^{<\mathbb{N}}$ with a total order isomorphic to \mathbb{Q} : $\sigma <_{\mathbb{Q}} \tau$ if there is a prefix $\tau' \leq \tau$ such that $\tau'0 \leq \tau$ and $\tau'0 \leq \sigma$.



Part 1 : Motivations	Part 2 : Reverse mathematics	Part 3 : Devlin's theorem 00●000	Part 4 : The generalized tree theorem
Devlin embed	ding types		

We are now interested in the two following embedding types:



Proposition (Devlin)

Given a strong tree T with no leaves, we can compute a countable anti-chain $A \subseteq T$ or order type \mathbb{Q} and whose leaves generate only one of the two embedding types listed above.

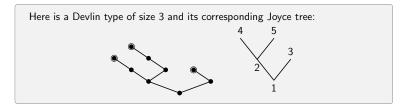
This gives rise to the concept of Devlin embedding types:

Definition (Devlin)

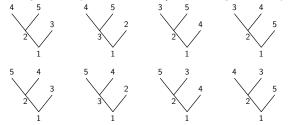
A **Devlin embedding type** of size *n* is the equivalence class of a finite strong tree with *n* leaves $\overline{\sigma}$ such that:

- **1** Every element of $\overline{\sigma}^{\wedge}$ is of different size.
- 2 Every node which is not a leaf and not branching "goes at the left".

Devlin types of size *n* can be put in bijections with **Joyce trees** of height *n* : increasing labeled full binary trees with 2n - 1 vertices:



Here are 8 among the 16 Joyce trees of size 3 (the remaining cases are symmetric):



Part 1 : Motivations	Part 2 : Reverse mathematics	Part 3 : Devlin's theorem 0000●0	Part 4 : The generalized tree theorem
Devlin's theor	em from Milliken's ti	ree theorem	

Theorem (Devlin)

Given a strong tree T with no leaves, we can compute a countable anti-chain $A \subseteq T$ or order-type \mathbb{Q} , among which each anti-chain of n strings always generates a Devlin embedding type, and such that each Devlin embedding type of size n is realized by any anti-chain $B \subseteq A$ isomorphic to \mathbb{Q} .

Iterating the Milliken's tree theorem on each Devlin embedding type:

Corollary (Devlin)

Let dt_n be the number of Devlin type of size n. Then $DT^n_{dt_n+1,dt_n}$ is a theorem and $DT^n_{dt_n,dt_n-1}$ is false : dt_n is the big Ramsey degree of the set of n rationals.

Corollary (Devlin)

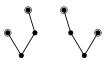
For any n, $DT^n_{dt_n+1,dt_n}$ is provable in ACA₀.

Does $\mathrm{DT}^2_{3,2}$ admits cone avoidance ?

 Part 1: Motivations
 Part 2: Reverse mathematics
 Part 3: Devlin's theorem
 Part 4: The generalized tree theorem

 0000000000
 0000
 00000
 00000

 $DT^2_{3,2}$ is a consequence of $MTT^{\mathfrak{e}}_3$ for \mathfrak{e} among the two following embedding types:



These embedding types are of size three and we can design a computable instance of MTT_3^e every solution of which computes \emptyset' for each of them.

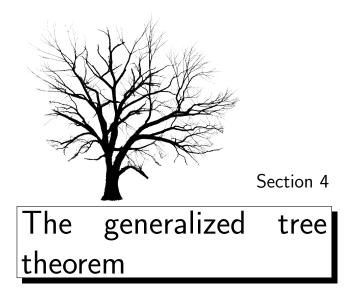
We can do something similar for $\mathrm{DT}^2_{3,2}$

Proposition (ACDMP)

There is a computable instance of $DT_{3,2}^2$ every solution of which computes the halting problem (it can also be done for $DT_{4,3}^2$).

Corollary (ACDMP)

For every $n \ge 2$, DT_{dt_n+1,dt_n}^n is equivalent to ACA_0 .

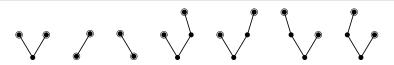


Part 1 : Motivations	Part 2 : Reverse mathematics	Part 3 : Devlin's theorem	Part 4 : The generalized tree theorem o●ooooo
The generalize	ed tree theorem		

We come back to the strong generalized tree principles:

Definition (The strong generalized tree principles)

 $\operatorname{SGTT}_{k,l}^{n}$: For any $f : [2^{<\mathbb{N}}]^{n} \to \{0, \ldots, k-1\}$, there is a strong subtree $S \subseteq 2^{<\mathbb{N}}$ with no dead ends such that $|f(T)| \leq l$.



Definition

Let $e_{\text{sTT}}(n)$ be the number of embedding types generated by *n* strings.

We have $e_{sTT}(1) = 1$ and $e_{sTT}(2) = 7$.

Proposition (ACDMP)

 $\mathrm{SGTT}^2_{8,7}$ is provable in ACA_0 and $\mathrm{SGTT}^2_{7,6}$ is false. 7 is the big Ramsey degree of pairs of string with respect to strong trees with no leaves.

In general $SGTT_{e_{sTT}(n)+1,e_{sTT}(n)}^n$ is not a theorem : two set of strings may generate the same embedding type, while **the role** of each string in the generation of this embedding type is different:

Two ways of generating the same embedding type with three strings.

Definition (Tuple types)

A **tuple type** is the equivalence class of the following equivalence relation defined on tuples of strings :

 $\overline{\sigma}$ is equivalent to $\overline{\tau}$ if there is a strong bijection between the strong tree generated by $\overline{\sigma}$ and the one generated by $\overline{\tau}$, which maps elements of $\overline{\sigma}$ to elements of $\overline{\tau}$.

Let $t_{sTT}(n)$ be the number of tuple types generated by *n* strings.

Part 1 : Mot 000000000			Part 3 : Devlin's theorem	Part 4 : The generalized tree theorem
The ger	neralized tre	ee theorem		

Theorem (ACDMP)

 $\mathrm{SGTT}^n_{t_{\mathrm{sTT}}(n)+1,t_{\mathrm{sTT}}(n)} \text{ is provable in } \mathrm{ACA}_0 \text{ and } \mathrm{SGTT}^n_{t_{\mathrm{sTT}}(n),t_{\mathrm{sTT}}(n)-1} \text{ is false.}$

	0	1	2	3	4	
$e_{\rm sTT}(n)$	1	1	7	345	136949	
$t_{\rm sTT}(n)$	1	1	7	369	145215	

These sequences have been obtained via brute force computation and do not appear on OEIS, The On-Line Encyclopedia of Integer Sequences.

 \Rightarrow they seem to be new natural combinatorial sequences.

Part 1 : Motivations	Part 2 : Reverse mathematics	Part 3 : Devlin's theorem	Part 4 : The generalized tree theorem 0000●00
The tree theo	rem		

Definition (Chubb, Hirst, McNichol)

 TT_k^n : for any coloring of the *n*-tuples of comparable strings with *k* colors, there exists a – not necessarily strong – monochromatic perfect tree.

Theorem (Chubb, Hirst, McNichol)

 TT_k^n is provable in ACA₀.

Definition (ACDMP)

 $\operatorname{GTT}_{k,l}^n$: for any coloring of the *n*-tuples of strings with *k* colors, there exists a – not necessarily strong – perfect tree using at most *l* colors.

Definition (ACDMP)

An **ACDMP type** is a tuple type generated by a tuple $\overline{\sigma}$ such that:

- **1** every string of $\overline{\sigma}$ is not in $\overline{\sigma}^{\wedge} \setminus \overline{\sigma}$.
- **2** every string of $\overline{\sigma}^{\wedge}$ is of different length.
- **3** every node in $\overline{\sigma}^{cl}$ which is not a leaf and not branching "goes at the left".

Part 1 : Motivations	Part 2 : Reverse mathematics	Part 3 : Devlin's theorem	Part 4 : The generalized tree theorem 00000000
The generalize	ed tree theorem		

Theorem (ACDMP)

Inside every strong perfect tree T we can compute with the help of T a perfect (non-strong) subtree S whose every tuple type is an ACDMP tuple type and such that every perfect subtree $R \subseteq S$ realizes every ACDMP tuple type.

Definition (ACDMP)

Let $t_{TT}(n)$ be the number of ACDMP tuple type and $e_{TT}(n)$ be the number of embedding type they belong to.

Theorem (ACDMP)

 ${\rm GTT}_{t_{\rm TT}(n)+1,t_{\rm TT}(n)}^n$ is a theorem provable in ${\rm ACA}_0$ whereas ${\rm GTT}_{t_{\rm TT}(n),t_{\rm TT}(n)-1}^n$ is false.

Corollary (Chubb, Hirst, McNichol)

 TT_k^n is a theorem provable in ACA_0 for every n, k.

The reason is that there is only one ACDMP tuple type of size n generated by comparable strings.

0000000000		000000	000000		
Some open questions					

The first values of our combinatorial sequences are:

	-	-	_	3	4	
$e_{\rm sTT}(n)$	1	1	7	345	136949	
$t_{\rm sTT}(n)$	1	1	7	369	136949 145215	
$e_{\mathrm{TT}}(n)$	1	1	7	27	561	
$t_{\rm TT}(n)$	1	1	7	29	635	

None of them appear on The On-Line Encyclopedia of Integer Sequences.

Question

Can any of these sequence be defined inductively by a simple closed formula ? what is the computational complexity of computing any of them ?

Question

Does every instance of
$$MTT_k^n$$
 admits a Δ_{n+1}^0 solution (we only have Δ_{2n-1}^0) ?

Question

Does MTT_2^2 implies WKL_0 ?