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KLR and MLR

Open Question

Do Martin-Löf randomness (MLR) and Kolmogorov-Loveland
randomness (KLR) coincide?

Known: If A ∈ MLR, then A ∈ KLR. So KLR ≤s MLR.

Theorem 1 (Merkle et al.)

If A = A0 ⊕A1 is KL-random, then at least one of the Ai is
ML-random.

Corollary: As mass problems, MLR ≤w KLR.

Question: (Miyabe) Is there a uniform reduction?



KLR and MLR

Theorem 2

As mass problems, MLR ≤s KLR.

Proof Idea: Output bits from Ai, switching whenever Ai

“doesn’t seem random”.

Ai ∈ MLR iff ∃c ∀n ∀s Ks(Ai�n) ≥ n− c.
Approximate K(Ai�n) from above by Ks(Ai�n).

Test values of c, starting at c = 0.

If at a stage s+ 1, an n ≤ s+ 1 has Ks+1(Ai�n) < n− cs,
switch to outputting A1−i and set cs+1 = cs + 1.

Φ(A)
A0 A1 A0 · · · Ai

Only 2n bits of A are needed to compute ΦA(n). So in fact
MLR ≤s,tt KLR.



Notation

Definition

ΦX is a truth-table reduction if there is a computable function
f such that for each n and X, n ∈ ΦX iff X |= σf(n).

{σn | n ∈ ω} is a uniformly computable list of all the finite
propositional formulas in variables v1, v2, . . . .

The variables in σn are vn1 , . . . , vnd
, where d depends on n.

X |= σn if σn is true with X(n1), . . . , X(nd) substituted for
vn1 , . . . , vnd

.

Question

For what reducibilities ∗ is it true that MLR ≤s,∗ Either(MLR)?

Definition

Either(C) = {A⊕B : A ∈ C or B ∈ C}



Reducibilities

d // p

��

1 // m

<<

//

��

c

::

l // tt // T

btt(1)

::

// btt(c)

<<

Figure: Reducibilities related to tt

Theorem

Positive, linear, and bounded truth-table reductions do not
witness MLR ≤s Either(MLR)



Positive Reducibility Cannot Be Used

Here each σf(n) is a CNF of the form
∧tn

k=1

∨mk
i=1 vf(n),i,k.

Proof: Case 3: There are infinitely many tables σf(n) such
that every

∨mk
i=1 contains an odd literal.

Let A = R⊕ 1, so A ∈ Either(MLR).

A |= σf(n), as every disjunct in such a σf (n) is true.

It is computable to determine if σf(n) is of this form.

ΦA 6∈ IM ⊇ MLR.

Case 4: For almost all tables σf(n), there is a
∨mk

i=1 containing
only even literals.

Set A = 0⊕R.

A 6|= σf(n), as some disjunct is false.

|ΦA| <∞, so ΦA is computable.



Linear Reducibility Cannot Be Used

Now each σf(n) is of the form
⊕tn

k=1 vf(k).

Definition

Let vni appear in σf(n). Say that ni is a fresh bit if for m < n,
vni does not appear in σf(m).

Proof: If ΦX only queries finitely many bits, it is computable
regardless of X. So suppose a fresh bit can always be found.

Without loss of generality, infinitely many of these are even.

Changing a single bit of any σf(n) changes the output of
the table.

For fresh even ni, ensure
⊕tn

k=1 vf(k) = 1.

Set the odd bits of A to be random.

It is computable to search for fresh even bits, so
ΦA 6∈ IM ⊇ MLR.



Proof Ideas

Definition

Q(n) = {vn1 , . . . , vnd
}, the set of variables in σf(n)

Definition

C ⊆ Q(n) controls σf(n) if some truth assignment of C ensures
σf(n) = >.

Example: {p, q} controls (p ∨ q)→ r via the assignment
p = q = ⊥. {r} can also control the formula via r = >.

The proof strategy for btt(c) relies on two ideas that appeared
in earlier proofs:

Computably search for σf(n) with fresh Q(n)

Try to assign them to control σf(n)



Bounded Truth-Table Reducibility Fails

There are at most c variables in each σf(n).

Proof Sketch: We may assume σf(n) is constant (i.e. > or ⊥)
only finitely often. Induct on c.

For the base case c = 1, each table queries at most one variable.
So controlling these tables is easy!

If only finitely many tables query a fresh bit, ΦX is computable.
Instead assume ΦX infinitely often queries a fresh bit - without
loss, an even bit. Control these. Set the odd bits of A to be
random.

The computable search for fresh even bits always finds another,
so ΦA has an infinite computable subset and is not immune.



btt(c) fails: Induction Step

Now assume that for any btt(d) reduction with d < c, there is
an B ∈ Either(MLR) that defeats it.

The Greedy Algorithm for Fresh Bits

Search for indicies n such that σf(n) only queries fresh bits as
follows:

n0 = 0

ni+1 is the least n such that Q(n) ∩
⋃

k<iQ(nk) = ∅.

If this search succeeds, we have an infinite computable set
whose tables we can try to control. But what if the search fails?



btt(c) fails: IS: Search Fails

- If the search fails, then for some N , all greater n have that
Q(n) ∩

⋃
k<N Q(nk) 6= ∅.

- So Φ is using information from H =
⋃

k<N Q(nk) over and
over again. Fixing H, Φ acts as a btt(d)-reduction, d < c.

- σg(n) is the table σf (n) with all vni ∈ H replaced by ⊥.
This defines a ΨX that acts as ΦX on reals A with
A ∩H = ∅.

- Each table σg(n) has |Q(n)| < c. Use the induction

hypothesis to get B ∈ Either(MLR) with ΨB 6∈ MLR.

- Define A = B \H. A ∈ Either(MLR) as MLR is closed
under finite differences. ΦA = ΨB 6∈ MLR.



btt(c) fails: IS: Search Succeeds

Finally, assume we have access to a computable set of indices ni
such that the Q(ni) are disjoint.

Case 1: There are infinitely many ni such that some C(ni)
containing only even bits controls σf(ni).

By assumption, the C(ni) are disjoint, so we may set their
bits without issue to get A |= σf(ni).

Set the odd bits of A to be random.

The greedy algorithm guarantees ΦA is not immune.

Case 2: Almost all of the σf(ni) cannot be controlled by subset
C(n) ⊆ Q(n) containing only even bits.

Set the even bits of A to be random.

For almost all ni, no matter how the even bits are fixed, we
can assign odd bits in Q(ni) so that A 6|= σf(ni).

The greedy algorithm guarantees ΦA is not co-immune.



Final Comments

These tt-reduction generalizes easily to any number of finite
columns A0 ⊕A1 ⊕ · · · ⊕An or even the infinite case

⊕∞
i=1Ai

(where only one column is random).

Our proofs are really about bi-immunity:

Theorem

If ∗ ∈ {p, l, btt(c)}, then BIM 6≤s,∗ Either(BIM).

Corollary

If ∗ ∈ {p, l, btt(c)}, then 1G 6≤s,∗ Either(1G).

Questions:

Does ≤s hold in either of these cases?

Does ≤s,tt?

What techniques could strengthen MLR ≤s,∗ KLR to other
reducibilities?
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