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KLR and MLR

Open Question

Do Martin-L6f randomness (MLR) and Kolmogorov-Loveland
randomness (KLR) coincide?

Known: If A € MLR, then A € KLR. So KLR <4, MLR.

Theorem 1 (Merkle et al.)

If A= Ay ® A; is KL-random, then at least one of the A; is
ML-random.

Corollary: As mass problems, MLR <,, KLR.

Question: (Miyabe) Is there a uniform reduction?



KLR and MLR

As mass problems, MLR <; KLR.

Proof Idea: Output bits from A;, switching whenever A;
“doesn’t seem random”.

e A; € MLR iff 3¢ Vn Vs K (Ai[n) > n —c.
e Approximate K(A;[n) from above by K¢(A;[n).
o Test values of ¢, starting at ¢ = 0.

o If at astage s+ 1, ann < s+ 1 has K1(4;[n) <n — cs,
switch to outputting A;_; and set cs41 = ¢s + 1.
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Only 2n bits of A are needed to compute ®4(n). So in fact
MLR <, KLR.



Definition

®X is a truth-table reduction if there is a computable function
f such that for each n and X, n € ®X iff X |= @)

e {0, | n € w} is a uniformly computable list of all the finite
propositional formulas in variables vy, vo,. ...

@ The variables in o, are v,,,...,v,,, where d depends on n.
e X E oy, if 0, is true with X (nq),..., X (ng) substituted for
Unyse-vsUng-

Question
For what reducibilities * is it true that MLR <, , Either(MLR)?

Definition

Either(C) ={A@®@ B: AeCor Be(C}




Reducibilities

Figure: Reducibilities related to tt

Theorem

Positive, linear, and bounded truth-table reductions do not
witness MLR <, Either(MLR)




Positive Reducibility Cannot Be Used

Here each o, is a CNF of the form VRV Vt(n) ik

Proof: Case 3: There are infinitely many tables o (,) such
that every \/\"% contains an odd literal.

o Let A= R® 1, s0 A € Either(MLR).

o A= 0y, as every disjunct in such a o¢(n) is true.
e It is computable to determine if oy, is of this form.
e &4 ¢ IM D MLR.

Case 4: For almost all tables oy (,), there is a V%% containing
only even literals.

o Set A=0® R.
o A O t(n), as some disjunct is false.

o |94 < 00, so 4 is computable.



Linear Reducibility Cannot Be Used

Now each oy is of the form @2”:1 Vi (k)-

Let vy, appear in o(,). Say that n; is a fresh bit if for m < n,
Up,; does not appear in ().

Proof: If ®X only queries finitely many bits, it is computable
regardless of X. So suppose a fresh bit can always be found.

o Without loss of generality, infinitely many of these are even.

e Changing a single bit of any o(,) changes the output of
the table.

o For fresh even n;, ensure @2":1 vy = L.
@ Set the odd bits of A to be random.

e It is computable to search for fresh even bits, so
®4 ¢ IM D MLR.



Proof Ideas

Q(n) = {vny, ..., vn,}, the set of variables in o)

| \

Definition

C C Q(n) controls oy if some truth assignment of C' ensures
g fn) = T.

\

Example: {p,q} controls (pV ¢q) — r via the assignment
p=q= L. {r} can also control the formula via r = T.

The proof strategy for btt(c) relies on two ideas that appeared
in earlier proofs:

o Computably search for o) with fresh Q(n)

e Try to assign them to control oy,



Bounded Truth-Table Reducibility Fails

There are at most ¢ variables in each o ().

Proof Sketch: We may assume o, is constant (i.e. T or 1)
only finitely often. Induct on c.

For the base case ¢ = 1, each table queries at most one variable.
So controlling these tables is easy!

If only finitely many tables query a fresh bit, ®X is computable.
Instead assume ®¥ infinitely often queries a fresh bit - without
loss, an even bit. Control these. Set the odd bits of A to be
random.

The computable search for fresh even bits always finds another,
so @4 has an infinite computable subset and is not immune.



btt(c) fails: Induction Step

Now assume that for any btt(d) reduction with d < ¢, there is
an B € Either(MLR) that defeats it.

The Greedy Algorithm for Fresh Bits

Search for indicies n such that oy (,) only queries fresh bits as
follows:

ony=0
® njy1 is the least n such that Q(n) NU,.; Q(ni) = 0.

If this search succeeds, we have an infinite computable set
whose tables we can try to control. But what if the search fails?



btt(c) fails: IS: Search Fails

If the search fails, then for some N, all greater n have that

Q1) NUp<n @nx) # 0.

So @ is using information from H = J,,_ y Q(nx) over and
over again. Fixing H, ® acts as a btt(d)-reduction, d < c.

og4(n) is the table o¢(n) with all v,, € H replaced by L.
This defines a U¥X that acts as ®X on reals A with
ANH =0.

Each table o,y has |Q(n)| < c. Use the induction
hypothesis to get B € Either(MLR) with ¥ ¢ MLR.

Define A= B\ H. A € Either(MLR) as MLR is closed
under finite differences. ®4 = U5 ¢ MLR.



btt(c) fails: IS: Search Succeeds

Finally, assume we have access to a computable set of indices n;
such that the Q(n;) are disjoint.

Case 1: There are infinitely many n; such that some C(n;)
containing only even bits controls o ().

e By assumption, the C'(n;) are disjoint, so we may set their
bits without issue to get A |= 0 fp,).-
o Set the odd bits of A to be random.
@ The greedy algorithm guarantees ® is not immune.
Case 2: Almost all of the oy (,,) cannot be controlled by subset
C(n) C Q(n) containing only even bits.
@ Set the even bits of A to be random.
e For almost all n;, no matter how the even bits are fixed, we
can assign odd bits in Q(n;) so that A [& oy,

o The greedy algorithm guarantees ®4 is not co-immune.



Final Comments

These tt-reduction generalizes easily to any number of finite
columns Ay @ A1 & - -- & A, or even the infinite case @;2, A;
(where only one column is random).

Our proofs are really about bi-immunity:

If x € {p,1,btt(c)}, then BIM £, , Either(BIM).

If x € {p,1,btt(c)}, then 1G £ , Either(1G).

Questions:
@ Does <, hold in either of these cases?
o Does <, 47
e What techniques could strengthen MLR <, , KLR to other
reducibilities?
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