Comparing induction and bounding principles over RCA₀ and RCA₀^{*}

Sarah Reitzes

Department of Mathematics University of Chicago

Midwest Computability Theory Seminar October 25, 2021

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Background on Π_2^1 -problems

In reverse mathematics, we often look at Π_2^1 -problems.

Definition A Π_2^1 -problem is a sentence

```
\forall X[\Theta(X) \rightarrow \exists Y \Psi(X, Y)]
```

of second-order arithmetic such that Θ and Ψ are arithmetic.

Definition

We say that an $X \subseteq \omega$ such that $\Theta(X)$ holds is an instance of this problem, and a solution is a $Y \subseteq \omega$ such that $\Psi(X, Y)$ holds. We denote such problems by P and Q.

Background on reverse math

We work in second-order arithmetic.

The usual base theory RCA₀ corresponds roughly to computable mathematics.

Formally, RCA₀ consists of the first order axioms for a discrete ordered commutative semiring together with Δ_1^0 -comprehension and Σ_1^0 -induction.

We will also have occasion to consider RCA₀^{*}, which is roughly RCA₀ where Σ_1^0 induction is weakened to Σ_0^0 induction.

Reducibility

Definition

We say that P is computably reducible to Q and write $P \leq_c Q$ if for every P-instance X, there is an X -computable instance \hat{X} of Q such that, whenever \hat{Y} is a solution to \hat{X} , X has an $X \oplus \hat{Y}$ -computable solution.

Definition

We say that P is Weihrauch reducible to Q, $P \leq_W Q$, if there are Turing functionals Φ and Ψ such that, for every instance X of P, the set Φ^X is an instance of Q, and for every solution \hat{Y} to $\hat{X} = \Phi^X$, the set $Y = \Psi^{X \oplus \hat{Y}}$ is a solution to X.

Using multiple instances

These two reducibilities allow us to use one instance of Q to solve an instance of P. We also sometimes consider ω -reducibility, which allows multiple uses of Q, but in a way that is not uniform. What if we would like to use multiple Q-instances in a uniform way?

Hirschfeldt and Jockusch introduced the idea of a reduction game to allow for this possibility, particularly two-player reduction games for principles P and Q, written as $G(Q \rightarrow P)$.

Definition

We say that P is generalized Weihrauch reducible to Q and write $P \leq_{gW} Q$, if Player 2 has a computable winning strategy for $G(Q \rightarrow P)$.

Extending generalized Weihrauch reducibility

We can extend the notion of a Π_2^1 -problem and the game $G(Q \rightarrow P)$ to a more general setting. Typically, we extend to the game over RCA₀, $G^{RCA_0}(Q \rightarrow P)$.

Definition

We say that P is generalized Weihrauch reducible to Q over RCA₀ and write $P \leq_{gW}^{RCA_0} Q$, if Player 2 has a computable (i.e., Δ_1^0), winning strategy for $G^{RCA_0}(Q \rightarrow P)$.

We define computable reducibility over RCA_0 and Weihrauch reducibility over RCA_0 in a similar way.

The reduction game $G^{\text{RCA}_0}(Q \rightarrow P)$ captures provability over $\text{RCA}_0.$

Theorem (Dzhafarov, Hirschfeldt, and Reitzes)

Let Γ be a consistent extension of Δ_1^0 -comprehension by Π_1^1 -formulas that proves the existence of a universal Σ_1^0 formula. Let P and Q be Π_2^1 -problems. If $\Gamma \vdash Q \rightarrow P$, then there is an n such that Player 2 has a winning strategy for $\hat{G}^{\Gamma}(Q \rightarrow P)$ that ensures victory in at most n many moves. Otherwise, Player 1 has a winning strategy for $\hat{G}^{\Gamma+Q}(Q \rightarrow P)$.

Some relevant bounding principles

In reverse math, we often consider the Σ_2^0 -bounding principle $B\Sigma_2^0$. Over RCA₀, $B\Sigma_2^0$ is equivalent to the principle Bound^{*} defined as follows.

Definition

Bound^{*} is the principle that for a simultaneous enumeration of bounded sets F_0, \ldots, F_n , there exists a common bound for the sets F_i .

We will also consider the principle stBound^{*}, which is a version of Bound^{*} where the number of sets is not part of the instance.

Induction and bounding reductions cont.

Definition

Let $F\Sigma_1^0$ denote the Π_2^1 principle: for every Σ_1^0 set *A* with nonempty complement, there exists an $a \in \overline{A}$ such that either a = 0 or a = S(b) for some $b \in A$, where *S* denotes the successor function.

This is a natural way to think of Σ_1^0 induction as a Π_2^1 principle.

Definition

 $C_{\mathbb{N}}$ is the Π_2^1 principle where an instance is an enumeration of the complement of a nonempty set *X*, and a solution is an element of *X*.

Induction and bounding reductions cont.

It is easy to see that $F\Sigma_1^0 \equiv^{RCA_0}_W C\Delta_2^0 \equiv^{RCA_0}_W C_N$. We have shown that

►
$$F\Sigma_1^0 \leq_{gW}^{RCA_0^*}$$
 Bound*,

►
$$F\Sigma_1^0 \leq_W^{RCA_0^*} stBound^*$$
,

$$\blacktriangleright \ C_{\mathbb{N}} <^{\mathsf{RCA}^*_0}_{\mathsf{W}} \text{ Bound}^*,$$

$$\blacktriangleright \mathsf{F}\Sigma_1^0 \not\leq_{\mathsf{gW}}^{\mathsf{RCA}_0^*} \mathsf{C}_{\mathbb{N}},$$

►
$$F\Sigma_1^0
\leq_W^{RCA_0^*}$$
 Bound^{*},

► Bound^{*}
$$\leq_{W}^{RCA_0} F\Sigma_1^0$$

► stBound^{*}
$$\leq_{W}^{\mathsf{RCA}_0} \mathsf{F}\Sigma_1^0$$
,

•
$$F\Pi_1^0 \leq_W^{\text{RCA}_0^*} F\Sigma_1^0$$
, and
• $F\Delta_2^0 \leq_{gW}^{\text{RCA}_0^*}$ Bound*.

Induction and bounding nonreductions

- Every FΣ₁⁰-instance has a solution in RCA₀, but there exist FΣ₁⁰-instances without solutions in RCA₀^{*}
- FΠ⁰₁ does not always have solutions in RCA^{*}₀
- $C_{\mathbb{N}}$ always has solutions in both RCA₀ and RCA₀^{*}
- Bound* and stBound* have instances without solutions in both RCA₀ and RCA₀*

(日) (日) (日) (日) (日) (日) (日)

This gives us many nonreductions, including:

$$\begin{array}{l} \bullet \quad \text{Bound}^* \not\leq_{gW}^{\text{RCA}_0} \text{F}\Sigma^{C} \\ \bullet \quad \text{Bound}^* \not\leq_{gW}^{\text{RCA}_0} \text{C}_{\mathbb{N}} \\ \bullet \quad \text{F}\Sigma^0_1 \not\leq_{gW}^{\text{RCA}_0} \text{C}_{\mathbb{N}} \\ \bullet \quad \text{F}\Pi^0_1 \not\leq_{gW}^{\text{RCA}_0} \text{C}_{\mathbb{N}}. \end{array}$$

Metatheorem

Conditions:

- 1. Π_2^1 principles P and Q
- 2. P and Q are first-order (codomain is \mathbb{N})
- 3. Q has computable instances
- There exists a computable procedure for computing a number k from X for any P-instance X such that X has a solution between 0 and k
- 5. For each σ that is an initial segment of a Q-instance and for any finite *k* and any $n_0, n_1, \ldots, n_k \in \omega$, there is a Q-instance *Y* extending σ for which n_0, n_1, \ldots, n_k are not solutions

(日) (日) (日) (日) (日) (日) (日)

Conclusion:

 $\mathsf{Q} \not\leq_{\mathsf{gW}}^{n} \mathsf{P}$ for any fixed $n \in \omega$

Metatheorem cont.

Consequently:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Metatheorem proof sketch

- Assume for a contradiction that $Q \leq_{qW}^{n} P$
- Build tree of possible plays of the game based on initial segments σ of Q-instances from S that give convergence to possible initial segments of P-instances for Player 2 to play
- Get value for corresponding k-parameter
- Repeat for each of the first n moves of the game
- On (n+1)st move, get finitely many potential solutions to the Q-instance we're building
- Diagonalize against them using hypothesis on strings in S

Applications of metatheorem

- ► $X := \{ \mathsf{F}\Sigma_1^0, \mathsf{med}\mathsf{R}\Sigma_1^0, \mathsf{st}\mathsf{R}\Sigma_1^0, \mathsf{st}\mathsf{B}\Sigma_1^0\mathsf{C}\mathsf{A}, \mathsf{C}_{\mathbb{N}}, \mathsf{C}_{\mathbb{N}}^*, \mathsf{st}\mathsf{R}\mathsf{T}_{<\infty}^1, \mathsf{Bound}, \mathsf{Bound}^*, \mathsf{st}\mathsf{Bound}^*, \mathsf{C}\Delta_2^0, \mathsf{F}\Delta_2^0 \}$
- $\blacktriangleright \quad Y := \{\mathsf{R}\Sigma_1^0, \, \mathsf{B}\Sigma_1^0\mathsf{C}\mathsf{A}, \, \mathsf{K}_\mathbb{N}, \, \mathsf{F}\Pi_1^0, \, \mathsf{R}\mathsf{T}_{<\infty}^1\}$
- For any $Q \in X$ and any $P \in Y$, $Q \not\leq_{gW}^{n} P$ for any fixed $n \in \omega$, $Q \not\leq_{gW}^{RCA_0} P$, and $Q \not\leq_{gW}^{RCA_0^*} P$. In particular

(日) (日) (日) (日) (日) (日) (日)

- ► $F\Sigma_1^0 \not\leq_{gW}^n F\Pi_1^0$
- C_N ≤ⁿ_{gW} FΠ⁰₁
- ► $F\Sigma_1^0 \not\leq_{gW}^n K_N$
- FΔ⁰₂ ≰ⁿ_{gW} FΠ⁰₁

References

- D. D. Dzhafarov, D.R. Hirschfeldt, and S.C. Reitzes, Reduction games, provability, and compactness, arXiv:2008.00907.
- D.R. Hirschfeldt and C.G. Jockusch, Jr.: On notions of computability-theoretic reduction between Π¹₂ principles. Journal of Mathematical Logic **16**(1650002), 59 pp. (2016).