Effective convergence notions for measures on the real line

Diego A. Rojas Joint work with Timothy McNicholl

Iowa State University

Öctober 25, 2021 Midwest Computability Seminar

◆□▶ < @ ▶ < 差 ▶ < 差 ▶ 差 少 Q @ 1/29</p>

Outline

- I. Background
 - Weak and Vague Convergence of Measures
 - Computable Analysis
 - Computable Measure Theory
- II. Effective Weak Convergence of Measures on $\ensuremath{\mathbb{R}}$
 - Definitions
 - Properties
 - Effective Portmanteau Theorem
 - Effective Convergence in the Prokhorov Metric
- III. Effective Vague Convergence of Measures on $\ensuremath{\mathbb{R}}$
 - Definitions
 - Properties

Part I: Background

 $\mathcal{M}(\mathbb{R}):$ the space of finite Borel measures on \mathbb{R}

Let $\{\mu_n\}_{n\in\mathbb{N}}$ be a sequence in $\mathcal{M}(\mathbb{R})$.

$$\lim_{n\to\infty}\int_{\mathbb{R}}fd\mu_n=\int_{\mathbb{R}}fd\mu$$

Weak Convergence: $f : \mathbb{R} \to \mathbb{R}$ is a bounded continuous function

Vague Convergence: $f : \mathbb{R} \to \mathbb{R}$ is a continuous function with compact support

Computable Analysis

- A computable metric space is a triple (X, d, S) with the following properties:
 - (X, d) is a complete separable metric space
 - $S = \{s_i : i \in \mathbb{N}\}$ is a countable dense subset of X
 - $d(s_i, s_j)$ is computable uniformly in i, j
- ► Examples:
 - ▶ (ℝ, | · |, ℚ)
 - $(2^{\omega}, d_C, S_C)$ where $d_C(X, Y) = 2^{-\min\{n:X(n)\neq Y(n)\}}$ and $S_C = \{\sigma 0^{\omega} : \sigma \in 2^{<\omega}\}$
- Throughout the talk, we will focus on $X = \mathbb{R}$.

Computable Analysis

- ▶ A (*Cauchy*) name of $x \in \mathbb{R}$ is a computable sequence of rationals $\{q_n\}_{n\in\mathbb{N}}$ so that $|q_n q_{n+1}| < 2^{-n}$.
- ▶ A function $f :\subseteq \mathbb{R} \to \mathbb{R}$ is *computable* if there is a Turing functional that sends a name of $x \in \text{dom } f$ to a name of f(x).
- A (compact-open) name of a function $f \in C(\mathbb{R})$ is an enumeration ρ_f of the set $\{N_{I,J} : f \in N_{I,J}\}$, where
 - $I \subseteq \mathbb{R}$ is a compact interval;
 - $J \subseteq \mathbb{R}$ is an open interval;
 - $\triangleright \quad N_{I,J} = \{ f \in C(\mathbb{R}) : f(I) \subseteq J \}.$
- A function F :⊆ C(ℝ) → ℝ is computable if there is a Turing functional that sends a name of f ∈ dom F to a name of F(f).

 $\{I_i\}_{i\in\mathbb{N}}$: effective enumeration of rational open intervals of $\mathbb R$

- An open $U \subseteq \mathbb{R}$ is Σ_1^0 if $\{i \in \mathbb{N} : I_i \subseteq U\}$ is c.e.; denote by $\Sigma_1^0(\mathbb{R})$
- A closed $C \subseteq \mathbb{R}$ is Π_1^0 if $\{i \in \mathbb{N} : I_i \cap C = \emptyset\}$ is c.e.; denote by $\Pi_1^0(\mathbb{R})$

◆□▶ ◆□▶ ◆ E ▶ ◆ E ▶ E の Q @ 7/29

 $\{W_e\}_{e \in \mathbb{N}}$: effective enumeration of c.e. sets

• Index *e* of $U \in \Sigma_1^0(\mathbb{R})$: $W_e = \{i \in \mathbb{N} : I_i \subseteq U\}$

• Index *e* of
$$C \in \Pi_1^0(\mathbb{R})$$
: $W_e = \{i \in \mathbb{N} : I_i \cap C = \emptyset\}$

For a compact subset K of \mathbb{R} :

► A (*minimal cover*) name of K is an enumeration of all minimal finite open covers of K.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ へ ⁽²⁾ 8/29

- ► *K* is *computably compact* if it has a computable name.
- An index of K is an index of a name of K.

- A measure µ ∈ M(ℝ) is computable if µ(ℝ) is computable and µ(U) is left-c.e. uniformly from (an index of) U ∈ Σ₁⁰(ℝ).
- A sequence {µ_n}_{n∈ℕ} in M(ℝ) is uniformly computable if µ_n is a computable measure uniformly in n.
- A set $A \subseteq \mathbb{R}$ is μ -almost decidable if there is a pair $U, V \in \Sigma_1^0(\mathbb{R})$ (called a μ -almost decidable pair) such that $U \cap V = \emptyset$, $\mu(U \cup V) = \mu(\mathbb{R}), \ \overline{U \cup V} = \mathbb{R}$, and $U \subseteq A \subseteq \mathbb{R} \setminus V$.
- Define an index *e* of a µ-almost decidable A ⊆ ℝ to be an index of its µ-almost decidable pair.

Prokhorov metric ρ on $\mathcal{M}(\mathbb{R})$: $\rho(\mu, \nu) :=$ the infimum over all $\epsilon > 0$ so that $\mu(A) \leq \nu(B(A, \epsilon)) + \epsilon$ and $\nu(A) \leq \mu(B(A, \epsilon)) + \epsilon$ for all $A \in \mathcal{B}(\mathbb{R})$, where

• $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra of \mathbb{R} ;

►
$$B(A, \epsilon) = \bigcup_{a \in A} B(a, \epsilon);$$

• $B(a, \epsilon)$ is the open ball of radius ϵ around a.

Work by M. Hoyrup and C. Rojas (2009) gives us the following:

- ► (M(R), ρ, D) is a computable metric space, where D denotes the space of finite rational linear combinations of Dirac measures on R.
- $\mu \in \mathcal{M}(\mathbb{R})$ is computable if and only if $I_{\mu} : f \mapsto \int_{\mathbb{R}} fd\mu$ is computable on computable $f \in C(\mathbb{R})$, uniformly from (a name of) f.

Part II: Effective Weak Convergence of Measures on ${\mathbb R}$

• Let $\{\mu_n\}_{n\in\mathbb{N}}$ be a sequence in $\mathcal{M}(\mathbb{R})$.

Definition.

 $\{\mu_n\}_{n\in\mathbb{N}}$ effectively weakly converges to $\mu \in \mathcal{M}(\mathbb{R})$ if for every bounded computable function $f :\subseteq \mathbb{R} \to \mathbb{R}$, $\lim_n \int_{\mathbb{R}} f d\mu_n = \int_{\mathbb{R}} f d\mu$ and it is possible to compute an index of a modulus of convergence for $\{\int_{\mathbb{R}} f d\mu_n\}_{n\in\mathbb{N}}$ from an index of f and a bound $B \in \mathbb{N}$ on |f|.

Definition.

 $\{\mu_n\}_{n\in\mathbb{N}}$ uniformly effectively weakly converges to $\mu \in \mathcal{M}(\mathbb{R})$ if it weakly converges to μ and there is a uniform procedure that computes for any bounded continuous function $f : \mathbb{R} \to \mathbb{R}$ a modulus of convergence for $\{\int_{\mathbb{R}} f d\mu_n\}_{n\in\mathbb{N}}$ from a name of f and a bound $B \in \mathbb{N}$ on |f|.

Example (1)

Fix $a, b \in \mathbb{Q}$, $E \in \mathcal{B}(\mathbb{R})$, a uniformly computable sequence $\{q_n\}_{n \in \mathbb{N}}$ in \mathbb{Q} that decreases to 0. The sequence $\mu_n(E) = \lambda(E \cap [a - q_n, b + q_n])$ effectively weakly converges to $\mu(E) = \lambda(E \cap [a, b])$, where λ is Lebesgue measure on $\mathcal{B}(\mathbb{R})$.

Example (2)

For a uniformly computable sequence $\{r_n\}_{n\in\mathbb{N}}$ in \mathbb{Q} that converges to some computable $r \in \mathbb{R}$, the sequence of Dirac measures $\{\delta_{r_n}\}_{n\in\mathbb{N}}$ effectively weakly converges to δ_r .

Proposition. (McNicholl, R. 2021+)

If $\{\mu_n\}_{n\in\mathbb{N}}$ is uniformly computable and effectively weakly converges to μ , then μ is a computable measure.

Nonexample

Let $\{q_n\}_{n\in\mathbb{N}}$ be a uniformly computable increasing sequence in \mathbb{Q} that converges to an incomputable left-c.e. $\alpha \in \mathbb{R}$. For $E \in \mathcal{B}(\mathbb{R})$ and λ Lebesgue measure on $\mathcal{B}(\mathbb{R})$, the sequence $\{\mu_n\}_{n\in\mathbb{N}}$ defined by $\mu_n(E) = \lambda(E \cap [0, q_n])$ weakly converges to $\mu(E) = \lambda(E \cap [0, \alpha])$, but fails to effectively weakly converge since $\mu(\mathbb{R}) = \lambda([0, \alpha]) = \alpha$ is not computable.

Theorem. (McNicholl, R. 2021+)

Suppose $\{\mu_n\}_{n\in\mathbb{N}}$ is uniformly computable. The following are equivalent:

- (1) $\{\mu_n\}_{n\in\mathbb{N}}$ is effectively weakly convergent;
- (2) $\{\mu_n\}_{n\in\mathbb{N}}$ is uniformly effectively weakly convergent.

Portmanteau Theorem (Alexandroff 1941)

For a sequence $\{\mu_n\}_{n\in\mathbb{N}}$ in $\mathcal{M}(\mathbb{R})$, the following are equivalent.

$$(1) \hspace{0.1 in} \{\mu_n\}_{n \in \mathbb{N}}$$
 weakly converges to μ

(2) For every uniformly continuous
$$f \in C_b(\mathbb{R})$$
,
$$\lim_{n \to \infty} \int_{\mathbb{R}} f d\mu_n = \int_{\mathbb{R}} f d\mu.$$

(3) For every closed
$$C \subseteq \mathbb{R}$$
, $\limsup_{n \to \infty} \mu_n(C) \le \mu(C)$.

(4) For every open
$$U \subseteq \mathbb{R}$$
, $\liminf_{n \to \infty} \mu_n(U) \ge \mu(U)$.

(5) For every
$$\mu$$
-continuity $A \subseteq \mathbb{R}$, $\lim_{n \to \infty} \mu_n(A) = \mu(A)$.

To help us formulate an effective version of the aforementioned theorem, we need the following definition.

Definition.

Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a sequence of reals, and let $g:\subseteq\mathbb{Q}\to\mathbb{N}$.

- We say g witnesses that lim inf_n a_n is not smaller than a if dom(g) is the left Dedekind cut of a and if r < a_n whenever r ∈ dom(g) and n ≥ g(r).
- We say g witnesses that lim sup_n a_n is not larger than a if dom(g) is the right Dedekind cut of a and if r > a_n whenever r ∈ dom(g) and n ≥ g(r).

◆□ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ 18/29

Effective Portmanteau Theorem

Theorem. (McNicholl, R. 2021+)

For a uniformly computable sequence $\{\mu_n\}_{n\in\mathbb{N}}$ in $\mathcal{M}(\mathbb{R})$, the following are equivalent.

- (1) $\{\mu_n\}_{n\in\mathbb{N}}$ effectively weakly converges to μ
- (2) From e, B ∈ N so that e indexes a uniformly continuous f ∈ C_b(R) with |f| ≤ B, it is possible to compute a modulus of convergence of {∫_R f dµ_n}_{n∈N} with limit ∫_R f dµ.
- (3) μ is computable, and from an index of C ∈ Π⁰₁(ℝ) it is possible to compute an index of a witness that lim sup_n μ_n(C) is not larger than μ(C).
- (4) μ is computable, and from an index of U ∈ Σ⁰₁(ℝ) it is possible to compute an index of a witness that lim inf_n μ_n(U) is not smaller than μ(U).
- (5) μ is computable, and for every μ-almost decidable A, lim_n μ_n(A) = μ(A) and an index of a modulus of convergence of {μ_n(A)}_{n∈ℕ} can be computed from an index of A.

Effective Convergence in the Prokhorov Metric

- ▶ We say $\{\mu_n\}_{n \in \mathbb{N}}$ converges effectively in the Prokhorov metric ρ to μ if there is a computable function $\epsilon : \mathbb{N} \to \mathbb{N}$ such that $n \ge \epsilon(N)$ implies $\rho(\mu_n, \mu) < 2^{-N}$ for all n, N.
- Note: ρ metrizes the topology of weak convergence of measures on M(X) for a separable metric space X.
- ► The following result is a consequence of the Effective Portmanteau Theorem.

Theorem. (R. 2021+)

For a uniformly computable sequence $\{\mu_n\}_{n\in\mathbb{N}}$ in $\mathcal{M}(\mathbb{R})$, the following are equivalent.

- (1) $\{\mu_n\}_{n\in\mathbb{N}}$ effectively weakly converges to μ
- (2) $\{\mu_n\}_{n\in\mathbb{N}}$ converges effectively in ρ to μ

Part III: Effective Vague Convergence of Measures on $\ensuremath{\mathbb{R}}$

• Let $\{\mu_n\}_{n\in\mathbb{N}}$ be a sequence in $\mathcal{M}(\mathbb{R})$.

Definition.

 $\{\mu_n\}_{n\in\mathbb{N}}$ effectively vaguely converges to $\mu \in \mathcal{M}(\mathbb{R})$ if for every compactly-supported computable function $f :\subseteq \mathbb{R} \to \mathbb{R}$, $\lim_n \int_{\mathbb{R}} f d\mu_n = \int_{\mathbb{R}} f d\mu$ and it is possible to compute an index of a modulus of convergence for $\{\int_{\mathbb{R}} f d\mu_n\}_{n\in\mathbb{N}}$ from an index of f and an index of supp f.

Definition.

 $\{\mu_n\}_{n\in\mathbb{N}}$ uniformly effectively vaguely converges to $\mu \in \mathcal{M}(\mathbb{R})$ if it vaguely converges to μ and there is a uniform procedure that computes for any compactly-supported continuous function $f : \mathbb{R} \to \mathbb{R}$ a modulus of convergence for $\{\int_{\mathbb{R}} f d\mu_n\}_{n\in\mathbb{N}}$ from a name of f and a name of supp f.

In contrast to effective weak convergence:

Proposition. (R. 2021+)

There is a uniformly computable sequence in $\mathcal{M}(\mathbb{R})$ that effectively vaguely converges but such that the limit measure μ has the property that $\mu(\mathbb{R})$ is an incomputable real.

Sketch.

Let $A \subset \mathbb{N}$ be an incomputable c.e. set, and let $\{a_i\}_{n \in \mathbb{N}}$ be an effective enumeration of A. The sequence $\mu_n = \sum_{i=0}^n 2^{-(a_i+1)} \delta_i$ for each $n \in \mathbb{N}$ effectively vaguely converges to the measure $\mu = \sum_{i=0}^\infty 2^{-(a_i+1)} \delta_i$. Note that $\mu(\mathbb{R}) = \sum_{i=0}^\infty 2^{-(a_i+1)}$ is incomputable since it is the limit of a Specker sequence.

Proposition. (R. 2021+)

If $\{\mu_n\}_{n\in\mathbb{N}}$ is a uniformly computable sequence that effectively vaguely converges to μ and $\mu(\mathbb{R})$ is computable, then μ is computable.

Theorem. (R. 2021+)

Suppose $\{\mu_n\}_{n\in\mathbb{N}}$ is uniformly computable. The following are equivalent:

- (1) $\{\mu_n\}_{n\in\mathbb{N}}$ is effectively vaguely convergent;
- (2) $\{\mu_n\}_{n\in\mathbb{N}}$ is uniformly effectively vaguely convergent.

Theorem. (R. 2021+)

Suppose $\{\mu_n\}_{n\in\mathbb{N}}$ is uniformly computable. Suppose further that there is a computable modulus of convergence for $\{\mu_n(\mathbb{R})\}_{n\in\mathbb{N}}$. The following are equivalent:

(1) $\{\mu_n\}_{n\in\mathbb{N}}$ is effectively vaguely convergent;

(2) $\{\mu_n\}_{n\in\mathbb{N}}$ is effectively weakly convergent.

Corollary.

Suppose $\{\mu_n\}_{n \in \mathbb{N}}$ is a uniformly computable sequence of probability measures. The following are equivalent:

(1) $\{\mu_n\}_{n\in\mathbb{N}}$ is effectively vaguely convergent;

(2) $\{\mu_n\}_{n\in\mathbb{N}}$ is effectively weakly convergent.

References I

- Alexandroff, A. "Additive set-functions in abstract spaces". In: Matematicheskii Sbornik 9.52 (3 1941), pp. 563–628.
- Bogachev, V. *Weak convergence of measures.* Vol. 234. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2018.
- Gács, P. "Uniform test of algorithmic randomness over a general space". In: *Theoretical Computer Science* 341.1 (2005), pp. 91–137.
- Hoyrup, M. and C. Rojas. "Computability of probability measures and Martin-Löf randomness over metric spaces". In: *Information and Computation* 207 (2009), pp. 830–847.
 - Kallianpur, G. "The Topology of Weak Convergence of Probability Measures". In: *Journal of Mathematics and Mechanics* 10 (6 1961), pp. 947–969.
 - McNicholl, T. and D. Rojas. "Effective notions of weak convergence of measures on the real line". In: *arxiv.org/abs/2106.00086* (2021).

Mori, T., Y. Tsujii, and M. Yasugi. "Computability of Probability Distributions and Distribution Functions". In: 6th International Conference on Computability and Complexity in Analysis (CCA'09). Vol. 11. 2009.

- Prokhorov, Y. "Convergence of random processes and limit theorems in probability theory". In: *Theory of Probability and Its Applications* 1 (2 1956), pp. 157–214.
- Rute, J. "Computable randomness and betting for computable probability spaces". In: *Mathematical Logic Quarterly* 62.4-5 (2016), pp. 335–366.
- Schröder, M. "Admissible representations for probability measures". In: *Mathematical Logic Quarterly* 53.4-5 (2007), pp. 431–445.
- Weihrauch, K. Computable Analysis: An Introduction. Springer-Verlag, 2000.

Thank you!

ଏ□▶ ଏ∰▶ ଏ≣▶ ଏ≣▶ ≣ ମ୍ର୍ଙ _{29/2}