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Relativity techniques

• Broadly speaking, in Mathematics the relativization method
consists in trying to state notions and results in terms of
morphisms, rather than objects, of a given category, so that
they can be ‘relativized’ to an arbitrary base object.

• One works in the new, relative universe as it were the
‘classical’ one, and then interprets the obtained results from
the point of view of the original universe. This process is
usually called externalization.

• Relativity techniques can be thought as general ‘change of
base techniques’, allowing one to choose the universe
relatively to which one works according to one’s needs.

• The relativity method has been pionneered by Grothendieck,
in particular for schemes, in his categorical refoundation of
Algebraic Geometry, and has played a key role in his work.

• We aim for a similar set of tools for toposes, that is, for an
efficient formalism for doing topos theory over an arbitrary
base topos.
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Topos theory over an arbitrary base topos

Our new foundations for relative topos theory are based on stacks
(and, more generally, fibrations and indexed categories).

The approach of category theorists (Lawvere, Diaconescu,
Johnstone, etc.) to this subject is chiefly based on the notions of
internal category and of internal site.

The problem with these notions is that they are too rigid to
naturally capture relative topos-theoretic phenomena, as well as
for making computations and formalizing ‘parametric reasoning’.

We shall resort to the more general and technically flexible notion
of stack, developing the point of view originally introduced by J.
Giraud in his paper Classifying topos.
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Grothendieck topologies
Recall that a sieve on an object c of a category C is a collection of
arrows to c which is closed with respect to composition on the right.

Definition
• A Grothendieck topology on a category C is a function J which

assigns to each object c of C a collection J(c) of sieves on c,
called the J-covering sieves, in such a way that

(i) (maximality axiom) the maximal sieve Mc = {f | cod(f ) = c} is in
J(c);

(ii) (stability axiom) if S ∈ J(c), then f ∗(S) ∈ J(d) for any arrow
f : d → c;

(iii) (transitivity axiom) if S ∈ J(c) and R is any sieve on c such that
f ∗(R) ∈ J(d) for all f : d → c in S, then R ∈ J(c).

• A site (resp. small site) is a pair (C, J) where C is a category
(resp. a small category) and J is a Grothendieck topology on C.

• A site (C, J) is said to be small-generated if C is locally small
and has a small J-dense subcategory (that is, a category D
such that every object of C admits a J-covering sieve
generated by arrows whose domains lie in D, and for every
arrow f : d → c in C where d lies in D the family of arrows
g : dom(g)→ d such that f ◦ g lies in D generates a
J-covering sieve).
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Examples of Grothendieck topologies
• If X is a topological space, the usual notion of covering in

Topology gives rise to the following Grothendieck topology
JO(X) on the poset category O(X ): for a sieve
S = {Ui ↪→ U | i ∈ I} on U ∈ Ob(O(X )),

S ∈ JO(X)(U) if and only if ∪
i∈I

Ui = U .

• If C satisfies the dual of the amalgamation property then the
atomic topology on C is the topology Jat defined by: for a sieve
S,

S ∈ Jat (c) if and only if S 6= ∅ .

• The Zariski topology on the opposite of the category Rngf.g. of
finitely generated commutative rings with unit is defined by: for
any cosieve S in Rngf.g. on an object A, S ∈ Z (A) if and only if
S contains a finite family {ξi : A→ Afi | 1 ≤ i ≤ n} of canonical
maps ξi : A→ Afi in Rngf.g. where {f1, . . . , fn} is a set of
elements of A which is not contained in any proper ideal of A.
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Sheaves on a site
Definition
• A presheaf on a (small) category C is a functor P : Cop → Set.

• Let P : Cop → Set be a presheaf on C and S be a sieve on an
object c of C.

A matching family for S of elements of P is a function which
assigns to each arrow f : d → c in S an element xf ∈ P(d) in
such a way that

P(g)(xf ) = xf◦g for all g : e→ d .

An amalgamation for such a family is a single element
x ∈ P(c) such that

P(f )(x) = xf for all f in S .

• Given a site (C, J), a presheaf on C is a J-sheaf if every
matching family for any J-covering sieve on any object of C has
a unique amalgamation.

• The category Sh(C, J) of sheaves on the site (C, J) is the full
subcategory of [Cop,Set] on the presheaves which are
J-sheaves.
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The notion of Grothendieck topos

Definition
A Grothendieck topos is any category equivalent to the category
of sheaves on a small(-generated) site.
The following examples show that toposes can be naturally
attached to mathematical notions as different as (small)
categories, topological spaces, or groups:

Examples
• For any (small) category C, [Cop,Set] is the category of

sheaves Sh(C,T ) where T is the trivial topology on C.
• For any topological space X , Sh(O(X ), JO(X)) is equivalent to

the usual category Sh(X ) of sheaves on X .
• For any (topological) group G, the category BG = Cont(G) of

continuous actions of G on discrete sets is a Grothendieck
topos (equivalent to the category Sh(Contt(G), Jat) of
sheaves on the full subcategory Contt(G) on the non-empty
transitive actions with respect to the atomic topology).
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Geometric morphisms
The natural, topologically motivated, notion of morphism of
Grothendieck toposes is that of geometric morphism:

Definition
(i) Let E and F be toposes. A geometric morphism f : E → F

consists of a pair of functors f∗ : E → F (the direct image of f )
and f ∗ : F → E (the inverse image of f ) together with an
adjunction f ∗ a f∗, such that f ∗ preserves finite limits.

(ii) Let f and g : E → F be geometric morphisms. A geometric
transformation α : f → g is defined to be a natural
transformation a : f ∗ → g∗.

Grothendieck toposes, geometric morphisms and geometric
transformations form a 2-category, called Topos.

Example
A continuous function f : X → Y between topological spaces gives
rise to a geometric morphism Sh(f ) : Sh(X )→ Sh(Y ). The direct
image Sh(f )∗ sends a sheaf F ∈ Ob(Sh(X )) to the sheaf
Sh(f )∗(F ) defined by Sh(f )∗(F )(V ) = F (f−1(V )) for any open
subset V of Y . The inverse image Sh(f )∗ acts on étale bundles
over Y by sending an étale bundle p : E → Y to the étale bundle
over X obtained by pulling back p along f : X → Y .
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Morphisms and comorphisms of sites
Geometric morphisms can be naturally induced by functors
between sites satisfying appropriate properties:

Definition
• A morphism of sites (C, J)→ (C′, J ′) is a functor F : C → C′

such that there is a geometric morphism
u : Sh(C′, J ′)→ Sh(C, J) making the following square
commutative:

C F //

l
��

C′

l′

��
Sh(C, J)

u∗ // Sh(C′, J ′);

• A comorphism of sites (D,K )→ (C, J) is a functor π : D → C
which has the covering-lifting property (in the sense that for
any d ∈ D and any J-covering sieve S on π(d) there is a
K -covering sieve R on d such that π(R) ⊆ S).

Theorem
• Every morphism of sites F : (C, J)→ (D,K ) induces a

geometric morphism Sh(F ) : Sh(D,K )→ Sh(C, J).

• Every comorphism of sites π : (D,K )→ (C, J) induces a
geometric morphism Cπ : Sh(D,K )→ Sh(C, J).
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Continuous functors

Another important class of functors between sites is that of
continuous ones:

Definition (Grothendieck)
Given sites (C, J) and (D,K ), a functor A : C → D is said to be
(J,K )-continuous, or simply, continuous, if the functor

DA := (− ◦ Aop) : [Dop,Set]→ [Cop,Set]

restricts to a functor Sh(D,K )→ Sh(C, J).

The property of continuity of a functor can be interpreted as a
form of cofinality; in fact, we have shown that it can be explicitly
characterized in terms of relative cofinality conditions.

Recall that every continuous comorphism of sites p induces an
essential geometric morphism Cp.
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Indexed categories and fibrations
The language in which we shall work for developing relative topos
theory is that of indexed categories and fibrations.
• Given a category C, we shall denote by IndC the 2-category of
C-indexed categories: it is the 2-category [Cop,Cat]ps whose
0-cells are the pseudofunctors Cop → Cat, whose 1-cells are
the pseudonatural transformations and whose 2-cells are the
modifications between them.

• Given a category C, we shall denote by FibC the 2-category of
fibrations over C: it is the sub-2-category of CAT/C whose
0-cells are the (Street) fibrations p : D → C, whose 1-cells are
the morphisms of fibrations (with a ‘commuting’ isomorphism)
and whose 2-cells are the natural transformations between
them.
We shall denote by cFibC the full sub-2-category of cloven
fibrations (i.e. fibrations equipped with a cleavage).

It is well-known that indexed categories and fibrations are in
equivalence with each other:

Theorem
For any category C, there is an equivalence of 2-categories
between IndC and cFibC , one half of which is given by the
Grothendieck construction and whose other half is given by the
functor taking the fibers at the objects of C.
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The notion of stack
Definition
Consider a site (C, J) and a fibration p : D → C: then p is a
J-prestack (resp. J-stack) if for every J-sieve mS : S � yC(X ) the
functor

− ◦
∫

mS : FibC(C/X ,D)→ FibC(
∫

S,D)

is full and faithful (resp. an equivalence).
Stacks over a site (C, J) form a 2-full and faithful subcategory of
IndC , which we will denote by St(C, J).

The notion of stack on a site is a higher-categorical generalization
of that of sheaf on that site:

Proposition
Consider a site (C, J) and a presheaf P : Cop → Set: then P is
J-separated (resp. J-sheaf) if and only if the fibration

∫
P → C is a

J-prestack (resp. J-stack).
We can rewrite the condition for a pseudofunctor Cop → Cat to be a
J-prestack (resp. J-stack) in the language of indexed categories, as
the requirement that for every sieve mS : S � yC(X ) the functor

IndC(yC(X ),D)
−◦mS−−−→ IndC(S,D)

be full and faithful (resp. an equivalence), where both yC(X ) and S
are interpreted as discrete C-indexed categories.
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Fibrations as comorphisms of sites
Recall that, given a functor A : C → D and a Grothendieck topology
K in D, there is a smallest Grothendieck topology MA

K on C which
makes A a comorphism of sites to (D,K ).

Proposition (O.C. and R.Z.)
If A is a fibration, the topology MA

K admits the following simple
description: a sieve R is MA

K -covering if and only if the collection of
cartesian arrows in R is sent by A to a K -covering family.

We shall call MA
K the Giraud topology induced by K , in honour of

Jean Giraud, who used it for constructing the classifying topos
Sh(C,MA

K ) of a stack A on (D,K ).

Proposition (O.C.)
For any Grothendieck topology K on D, every morphism of
fibrations (A : C → D)→ (A′ : C′ → D) yields a continuous
comorphism of sites (C,MA

K )→ (C′,MA′
K ).

In particular, a fibration A : C → D yields a continuous comorphism
of sites (C,MA

K )→ (D,K ) for any Grothendieck topology K on D.
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Unifying morphisms and comorphisms of sites

We can unify the notions of morphism and comorphisms of sites
by interpreting them as two fundamentally different ways of
describing morphisms of toposes which correspond to each other
under a topos-theoretic ‘bridge’.

More specifically, morphisms of sites provide an ‘algebraic’
perspective on morphisms of toposes, while comorphisms of sites
provide a ‘geometric’ perspective on them.

The key idea is to replace the given sites of definition with
Morita-equivalent ones in such a way that the given morphism
(resp. comorphism) of sites acquires a left (resp. right) adjoint,
not necessarily in the classical categorial sense but in the weaker
topos-theoretic sense of the associated comma categories having
equivalent associated toposes.

Let us focus on the procedure for turning a morphism of sites into
a comorphism of sites inducing the same geometric morphism.
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From morphisms to comorphisms of sites

Theorem (O.C.)
Given a morphism F : (C, J)→ (D,K ) of small-generated sites,
let

- (1D ↓ F ) be the ‘comma category’ whose objects are the
triplets (d , c, α : d → F (c))

- iF be the functor C → (1D ↓ F ) sending any object c of C to
the triplet (F (c), c,1F (c)),

- πC : (1D ↓ F )→ C and πD : (1D ↓ F )→ D the canonical
projection functors, and

- K̃ be the Grothendieck topology on (1D ↓ F ) whose covering
sieves are those whose image under πD is K -covering.

Then:
(i) πC a iF , πD ◦ iF = F, iF is a morphism of sites

(C, J)→ ((1D ↓ F ), K̃ ) and cF := πC is a comorphism of sites
((1D ↓ F ), K̃ )→ (C, J).
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From morphisms to comorphisms of sites

(ii) πD : ((1D ↓ F ), K̃ )→ (D,K ) is both a morphism of sites and
a comorphism of sites inducing equivalences

CπD : Sh((1D ↓ F ), K̃ )→ Sh(D,K )

and
Sh(πD) : Sh(D,K )→ Sh((1D ↓ F ), K̃ )

which are quasi-inverse to each other and make the following
triangle commute:

Sh((1D ↓ F ), K̃ ) Sh(D,K )

Sh(C, J)

CπD

∼

CπC
∼=Sh(iF )

Sh(πD)

Sh(F )

For any geometric morphism f : F → E , f ∗ is a morphism of sites
(E , Jcan

E )→ (F , Jcan
F ) such that f = Sh(f ∗). We thus obtain the

following result.
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The canonical stack of a geometric morphism
Corollary (O.C.)
Let f : F → E be a geometric morphism. Then the canonical
projection functor

πE : (1F ↓ f ∗)→ E

is a comorphism of sites ((1F ↓ f ∗), J̃can
F )→ (E , Jcan

E ) such that
f = CπE .

The functor πE : (1F ↓ f ∗)→ E is actually a stack on E , which we
call the canonical stack of f : from an indexed point of view, this
stack sends any object E of E to the topos F/f ∗(E) and any arrow
u : E ′ → E to the pullback functor u∗ : F/f ∗(E)→ F/f ∗(E ′).

By taking f to be the identity, and choosing a site of definition (C, J)
for E , we obtain the canonical stack S(C,J) on (C, J), which sends
any object c of C to the topos Sh(C, J)/l(c). The above corollary
thus specializes to an equivalence

Sh(C, J) ' Sh(S(C,J), J̃can
Sh(C,J)),

which represents a ‘thickening’ of the usual representation of a
Grothendieck topos as the topos of sheaves over itself with respect
to the canonical topology.
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Stacks over a site
The role of stacks in our approach to relative topos theory is
two-fold:
• On the one hand, the notion of stack represents a higher-order

categorical generalization of the notion of sheaf. Accordingly,
categories of stacks on a site represent higher-categorical
analogues of Grothendieck toposes. One can thus expect to
be able to lift a number of notions and constructions pertaining
to sheaves (resp. Grothendieck toposes) to stacks (resp.
categories of stacks on a site).

• On the other hand, stacks on a site (C, J) generalize internal
categories in the topos Sh(C, J). Since (usual) categories can
be endowed with Grothendieck topologies, so stacks on a site
can also be endowed with suitable analogues of Grothendieck
topologies. This leads to the notion of site relative to a base
topos, which is crucial for developing relative topos theory.

Remark
Every stack is equivalent to a split stack, that is to an internal
category, but most stacks naturally arising in the mathematical
practice are not split (think, for instance, of the canonical site of a
topos).
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The big picture
Our theory is based on a network of 2-adjunctions, as follows:

IndC Topos/Sh(C, J)co

St(C, J) EssTopos/Sh(C, J)co

Sh(C, J)

sJ

Λ

⊥
Γ

`

E◦Λ′

Λ′

⊥

L

Γ′

` Ea

In this diagram, (C, J) is a small-generated site, IndC is the category
of C-indexed categories, Sh(C, J) is the category of J-sheaves on C,
St(C, J) is the category of J-stacks on C, sJ is the stackification
functor, Topos is the category of Grothendieck toposes and
geometric morphisms and EssTopos is the full subcategory on the
essential geometric morphisms.

The functor E sends an essential geometric morphism
f : E → Sh(C, J) to the object f!(1E ) (where f! is the left adjoint to
the inverse image f ∗ of f ) and the functor L sends an object P of
Sh(C, J) to the canonical local homeomorphism
Sh(C, J)/P → Sh(C, J).
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Relative ‘presheaf toposes’

Given a C-indexed category D, we denote by G(D) the fibration on
C associated with it (through the Grothendieck construction) and
by pD the canonical projection functor G(D)→ C.

Proposition (O.C. and R.Z.)
Let (C, J) be a small-generated site, D a C-indexed category and
DV be the opposite indexed category of D (defined by setting, for
each c ∈ C, DV (c) = D(c)op). Then we have a natural equivalence

Sh(G(D),MpD
J ) ' IndC(DV ,S(C,J)) .

This proposition shows that, if D is a stack, the classifying topos
Sh(G(D),MpD

J ) of D, which we call the Giraud topos of D, can
indeed be seen as the “topos of relative presheaves on D”.
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Giraud toposes as weighted colimits

We have shown that, for any D, the Giraud topos
CpD : Sh(G(D),MpD

J )→ Sh(C, J) can be naturally seen as a
weighted colimit of a diagram of étale toposes over Sh(C, J):

Sh(C/X , JX ) Sh(C/Y , JX )

Sh(G(D),MpD
J )

λ(X,V ) λ(X,U)

CΣy

λ(Y ,(D(y)(U)))

λ(X,a)

∼=

where y : Y → X and a : U → V are arrows respectively in C and
in D(X ), the legs λ(X ,U) : Sh(C/X , JX )→ Sh(G(D,MpD

J ) of the
cocone are the morphisms Cξ(X,U)

induced by the morphisms of
fibrations ξ(X ,U) : C/X → D over C given by the fibered Yoneda
lemma, and the functor Σy : C/Y → C/X are given by composition
with y .
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The fundamental adjunction
The universal property of the above weighted colimit yields a
fundamental 2-adjunction between cloven fibrations over C and
toposes over Sh(C, J):

Theorem (O.C and R.Z.)
For any small-generated site (C, J), the two pseudofunctors

ΛToposco/Sh(C,J) : cFibC
G−→ Com/(C, J)

C(−)−−−→ Toposco/Sh(C, J),[
[p : D → C]

(F ,φ)−−−→ [q : E → C]

]
7→
[

[GirJ(p)]
(CF ,Cφ)−−−−−→ [GirJ(q)]

]
,

and

ΓToposco/Sh(C,J) : Toposco/Sh(C, J)→ IndC ' cFibC ,

[E : E → Sh(C, J)] 7→
[
Toposco/Sh(C, J)(Sh(C/−, J(−)), [E ]) : Cop → CAT

]
are the two components of a 2-adjunction

cFibC Toposco/Sh(C, J)

ΛToposco/Sh(C,J)

`

ΓToposco/Sh(C,J)

Remark
Since GirJ(p) ' IndC(DV ,S(C,J)), the canonical stack S(C,J) has a
similar behavior to that of a dualizing object for the adjunction Λ a Γ.
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The discrete setting
The specialization of our fundamental adjunction in the setting of
presheaves (that is, of discrete fibrations) yields a generalization to
the context of arbitrary sites of the classical adjunction

Psh(X ) Top/X

Λ

a

Γ

.

between presheaves on a topological space X and bundles over it.

Definition
We call a geometric morphism F : F → Sh(C, J) small relative to
Sh(C, J) if for any J-sheaf P : Cop → Set the geometric morphisms
Sh(C, J)/P → F over Sh(C, J) form a set (up to equivalence of
geometric morphisms), that is, if the category

Topos/1Sh(C, J)(Sh(C, J)/P,F )

is small.

We denote by Toposs/1Sh(C, J) the full subcategory of the
1-category Topos/1Sh(C, J) whose objects are the small
geometric morphisms relative to Sh(C, J).
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The discrete setting

Proposition (O.C. and R.Z.)
Consider a small-generated site (C, J):
• There is an adjunction of 1-categories

[Cop,Set] Toposs/1Sh(C, J)

ΛToposs/1Sh(C,J)

ΓToposs/1Sh(C,J)

a

.

- The functor ΛToposs/1Sh(C,J) maps a presheaf P to∏
aJ (P) : Sh(C, J)/aJ (P)→ Sh(C, J) or, in terms of comorphisms

of sites, to Λ(P) := [CpP : Sh(
∫

P, JP)→ Sh(C, J)] and
Λ(g) := C∫

g : Sh(
∫

P, JP)→ Sh(
∫

Q, JQ).

- The functor ΓToposs/1Sh(C,J) acts like a Hom-functor by mapping
an object [F : F → Sh(C, J)] of Toposs/1Sh(C, J) to the
presheaf

Toposs/1Sh(C, J)(Sh(C, J)/`J (−),F ) : Cop → Set .
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The general presheaf-étale adjunction

• The image of ΛToposs/1Sh(C,J) factors through
Toposétale/Sh(C, J), and the image of ΓToposs/1Sh(C,J) factors
through Sh(C, J);

• The fixed points of Toposs/1Sh(C, J) are precisely the étale
geometric morphisms, while those of [Cop,Set] are
J-sheaves.

• The adjunction ΛToposs/1Sh(C,J) a ΓToposs/1Sh(C,J) restricts to an
equivalence

Sh(C, J) ' Toposétale/1Sh(C, J) .

• The composite functor ΓToposs/1Sh(C,J)ΛToposs/1Sh(C,J) is
naturally isomorphic to the sheafification functor

iJaJ : [Cop,Set]→ Sh(C, J)→ [Cop,Set];
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Some applications

The presheaf-bundle adjunction for topological spaces is useful
mostly becase it provides a geometric interpretation of several
fundamental constructions on (pre)sheaves, such as direct and
inverse images, as well as the sheafification process, in the
language of fibrations.

Thanks to our site-theoretic generalization, we can extend these
techniques to arbitrary presheaves. In particular, we obtain the
following results:
• For any c ∈ C, the elements aJ(P)(c) of the J-sheafification

of a given presheaf P can be identified with the geometric
morphisms over Sh(C, J) from Sh(C/c, Jc) to Sh(

∫
P, JP), all

of which can be locally represented as being induced by
morphisms of fibrations.

This is strictly related to the construction of aJ(P)(c) in terms
of locally matching families of elements of P.
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Direct and inverse images in terms of fibrations

• Given a functor F : C → D and two presheaves P : Cop → Set
and Q : Dop → Set with associated fibrations πP :

∫
P → C

and πQ :
∫

Q → D,
- the fibration corresponding to the direct image presheaf

Q ◦ F op is computed as the strict pullback of πQ along F :∫
(F∗(Q))

∫
Q

C D

πQ

F

y

- If F is a morphism of sites (C, J)→ (D,K ) then, for any
J-sheaf P on C, the inverse image Sh(F )∗(P) coincides with
the discrete part of the K -comprehensive factorization (in the
sense of O.C.) of the composite functor F ◦ πP .

We have also established natural analogues of these results in
the context of stacks.
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Relative sheaf toposes
As any Grothendieck topos is a subtopos of a presheaf topos, so
any relative topos should be a subtopos of a relative presheaf
topos. This motivates the following

Definition
Let (C, J) be a small-generated site. A site relative to (C, J) is a
pair consisting of a C-indexed category D and a Grothendieck
topology K on G(D) which contains the Giraud topology MpD

J .

The topos of sheaves on such a relative site (D,K ) is defined to
be the geometric morphism

CpD : Sh(G(D),K )→ Sh(C, J)

induced by the comorphism of sites pD : (G(D),K )→ (C, J).

Remark
Not every Grothendieck topology on K can be generated starting
by horizontal or vertical data (that is, by sieves generated by
cartesian arrows or entirely lying in some fiber), but many
important relative topologies naturally arising in practice are of
this form.
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Examples of relative topologies

• The Giraud topology is an example of a relative topology
generated by horizontal data.

• The total topology of a fibered site, in the sense of
Grothendieck, is generated by vertical data.

• The topology presenting the over-topos at a model
(introduced in a joint work with Axel Osmond), defined on the
stack of its generalized elements, is an example of a ‘mixed’
relative topology.

We have shown that, for a wide class of relative topologies
generated by horizontal and vertical data, one can describe
bases for them consisting of multicompositions of horizontal
families with vertical families, thus generalizing the description of
bases provided in the context of the over-topos construction.
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A problem of Grothendieck

As recently brought to the public attention by Colin McLarty,
Grothendieck expressed, in his 1973 Buffalo lectures, the
aspiration of viewing any object of a topos geometrically as an
étale space over the terminal object:

The intuition is the following: viewing objects of a topos
as being something like étale spaces over the final object
of the topos, and the induced topos over an object as just
the object itself. That is I think the way one should handle
the situation.
It’s a funny situation because in strict terms, you see,
the language which I want to push through doesn’t make
sense. But of course there are a number of mathematical
statements which substantiate it.

Given his conception of gros and petit toposes, we can more
broadly interpret his wish as that for a framework allowing one to
think geometrically about any topos, that is, as it were a ‘petit’
topos related to a ‘gros’ topos by a local retraction.
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Local morphisms

Recall that a geometric morphism f : F → E is said to be local if f∗
has a fully faithful right adjoint.

Theorem (O.C.)
Let F : D → C be a bimorphism of sites (D,K )→ (C, J). Then:

(i) The geometric morphism CF : Sh(D,K )→ Sh(C, J) is
essential, and

(CF )!
∼= Sh(F )∗ a Sh(F )∗ ∼= (CF )∗ = DF := (−◦F op) a (CF )∗

(ii) The morphism Sh(F ) : Sh(C, J)→ Sh(D,K ) is local if and
only if CF is an inclusion, that is, if and only if F is K -faithful
and K -full. In this case, the morphisms CF and Sh(F ) realize
the topos Sh(D,K ) as a (coadjoint) retract of Sh(C, J) in
Topos.
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Gros and petit toposes

Pairs of gros and petit toposes are important for several reasons.
Morally, a petit topos is thought of as a generalized space, while a
gros topos is conceived as a category of spaces.

In fact, one advantage of gros toposes is that they are associated
with sites which tend to have better categorical properties than
those of the site presenting the petit topos.

Still, gros and petit toposes in a given pair are homotopically
equivalent (as they are related by a local retraction), whence they
share the same cohomological invariants.

The above result can be notably applied to construct pairs of gros
and petit toposes starting from a (K -)full and (K -)faithful
bimorphism of sites

(D,K )→ (T /TD,ETD ),

where T is a category endowed with a Grothendieck topology E ,
TD is an object of T and ETD is the Grothendieck topology
induced on (T /TD) by E .
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Every Grothendieck topos is a ‘small topos’
We define a Grothendieck topology Jét on Topos, which we call the
étale cover topology, by postulating that a sieve on a topos E is
Jét-covering if and only if it contains a family {E/Ai → E | i ∈ I} of
canonical local homeomorphisms such that the family of arrows
{!Ai : Ai → 1E | i ∈ I} is epimorphic in E .

The functor L is a J-full and J-faithful bimorphism of sites

(C, J)→ (Topos/Sh(C, J), Jét
Sh(C,J)) .

So, by the above result, the ‘petit’ topos Sh(C, J) identifies with a
coadjoint retract of the ‘big’ topos
Sh(Topos/Sh(C, J), Jét

Sh(C,J)) ' Sh(Topos, Jét)/l(Sh(C, J)) (in a
suitable Grothendieck universe) via the local morphism Sh(L) and
the essential inclusion CL.

This shows that every Grothendieck topos can be naturally
regarded as a ‘petit’ topos embedded in an associated ‘gros’ topos,
and that this embedding allows one to view any object of the original
topos as an étale morphism to the terminal object in the associated
‘gros’ topos, thus providing a solution to Grothendieck’s problem.
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Future developments

Our notion of relative site will play a key role in our future
development the theory of relative toposes.

We expect the development of this theory to parallel that of the
classical theory; indeed, by using a general stack semantics, we
plan to introduce, in a canonical, not ad hoc way, natural
generalizations to the relative setting of the classical notions of
morphism and comorphism of sites, flat functors, separating sets
for a topos, denseness conditions etc.

This will notably lead us to relative versions, in the language of
stacks (or, more generally, of indexed categories), of Giraud’s and
Diaconescu’s theorems, as well as to a theory of classifying
toposes of (higher-order) relative geometric theories.
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Towards relative geometric logic

Indeed, the geometric approach to relative toposes which we
have developed so far has a logical counterpart, which we may
call relative geometric logic.

In its classical formulation, geometric logic does not have
parameters embedded in its formalism; still, it is possible to
introduce them without changing its degree of expressivity.

In a relative setting, parameters are fundamental if one wants to
reason geometrically and use fibrational techniques. In fact, the
semantics of stacks involves parameters in an essential way.

It turns out that the logical framework corresponding to relative
toposes is a kind of fibrational, higher-order parametric logic in
which it is possible to express a great number of higher-order
constructions by using the parameters belonging to the base
topos.
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For further reading

O. Caramello,
Denseness conditions, morphisms and equivalences of
toposes,
monograph draft available as arxiv:math.CT/1906.08737v3
(2020).

O. Caramello and R. Zanfa,
Relative topos theory via stacks,
monograph draft available as arxiv:math.AG/2107.04417v1
(2021).

O. Caramello
Theories, Sites, Toposes: Relating and studying
mathematical theories through topos-theoretic ‘bridges’,
Oxford University Press (2017).
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