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Opening words

Logicians are very familiar with recursion and induction,
perhaps less so with their “duals” corecursion and coinduction.

Many of the fundamental structures in mathematical logic
happen to be initial algebras:
the natural numbers, or the cumulative hierarchy of sets.

At the same time, there are many compelling structures that are
characterized as final coalgebras:
the Cantor space, the unit interval, fractals, and Harsanyi type
spaces.

This talk is a high-level introduction to the area of coalgebra,
tuned to a logic audience.
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Another angle

Part of the appeal of coalgebra in theoretical computer science
is that it gives a set of tools relevant and applicable to
finitely approximable infinite objects.

These same tools can be pointed back at more “classical”
topics,
like those in areas of continuous mathematics.

This talk is a kind of progress report on this turn.

It is more like an examination of special topics
and less of a general theory.
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Algebras for a functor

Let A be a category, and let F : A→A be a functor.

An F-algebra is a morphism of the form a : FA → A .

An initial algebra is one with a unique morphism to any algebra.

FA a //

Fϕ
��

A
there is a unique morphism ϕ

��
FB

for all b
// B
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Example: the natural numbers

The category is Set.

The functor is FX = 1 + X .

An algebra for F is a set A together with a map

1 + A → A

So it is an element a ∈ A and an endo-map f : A → A .

The main example is N = ω, the natural numbers,
with 0 ∈ N, and s : N → N the successor function.

A morphism of algebras is what you think it is.
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Recursion on N is tantamount to Initiality
Recursion on N: For all sets A , all a ∈ A , and all f : A → A ,
there is a unique ϕ : N → A so that

ϕ(0) = a
ϕ(n + 1) = f(ϕ(n)) for all n

Initiality of N: For all (A , [a, f ]), there is a unique homomorphism

ϕ : (N, [0, s]])→ (A , [a, f ])

That is, the diagram below commutes:

1 + N
[0,s] //

1+ϕ
��

N
ϕ

��
1 + A

[a,f ]
// A

Recursion on N may be recast in terms of
maps out of an initial algebra.

6/61



Example: the finite binary trees

The category is Set.

The functor is FX = 1 + (X × X).

An algebra for F is a set A together with a map

1 + (A × A)→ A

So it is an element of A and a map a : A × A → A .

A morphism of algebras is what you think it is.
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Example: FX = 1 + (X × X)

Recursion Principle for Finite Trees
For all sets X , all x ∈ X , all f : X × X → X ,
there is a unique ϕ : µF → X
so that ϕ is

one-point tree • 7→ x

t u
7→ f(ϕ(t), ϕ(u))

Recursion Principle for Finite Trees
For all algebras f : 1 + (X × X)→ X ,
there is a unique ϕ : µF → X so that

F(µF)
? //

1+(ϕ×ϕ)
��

µF

ϕ
��

FX
f
// X

commutes, where (ϕ × ϕ)(t ,u) = (ϕ(t), ϕ(u)).
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The definitions

Let A be a category, and let F : A→A be a functor.

An F-algebra is a morphism of the form a : FA → A .
An F-coalgebra is a morphism of the form a : A → FA .

Example: deterministic automata

(S , s : S → 2 × SA )

are coalgebras of 2 × XA , again on Set.
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Morphisms of algebras and coalgebras
Let (A ,a : FA → A) and (B ,b : FB → B) be algebras.
A morphism is f : A → B in the same underlying category so that

FA a //

Ff
��

A

f
��

FB
b
// B

commutes.

Let (A ,a : A → FA) and (B ,b : B → FB) be coalgebras.
A morphism is f : A → B in the same underlying category so that

A a //

f
��

FA

Ff
��

B
b
// FB

commutes.
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Initial algebras and final coalgebras

initial algebra FA a //

Ff
��

A

f
��

FB
b
// B

A a //

f
��

FA

Ff
��

B
b
// FB final coalgebra
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Examples

functor initial algebra
1 + X on Set natural numbers
1 + X2 on Set finite binary trees
1 + (A × X) on Set finite sequences from A
1 + X2 on MS finite binary trees, with metric
1 + X2 on CMS finite and infinite binary trees, with metric

functor final coalgebra
1 + X on Set natural numbers + ∞
1 + X2 on Set finite and infinite binary trees
1 + (A × X) on Set finite and infinite sequences from A

In all these cases, the structure maps are also natural.
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Example: formal languages as a final coalgebra
The category is Set .

The functor is F(S) = 2 × SA , where A is a fixed “alphabet” set.

Coalgebras of 2 × XA are deterministic automata

S s //

ϕ

��

2 × SA

id2×ϕA

��
L

l
// 2 × LA final coalgebra

Let L = P(A ∗) be the set of formal languages over A

The final coalgebra is

L → 2 × LA ,

and is given in terms of Brzozowski derivatives.

The map ϕ takes a state to the language accepted there.
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History

The theme is that a lot of interesting structures in
mathematics,
starting with the set of natural numbers itself,
are either initial algebras or final coalgebras.

What about the set R of reals?
What about [0,1]?
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Freyd: [0,1] as a final coalgebra

Let BiP be the category of bi-pointed sets.

These are triples (X ,>,⊥) with X a set and also
>,⊥ ∈ X and > , ⊥.

The bipointed set {>,⊥} is initial, but there is no final object.

The functor F : BiP→ BiP

X XX X7→>⊥ >⊥

identify > of left with ⊥ of right
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The main existence theorem for initial
algebras/final coalgebras

Adámek 1974
Assume that the underlying category A has an initial object 0
and a colimit µF of

0 ! // F0 F! // F20 F2! // · · ·
Fn−1! // Fn0 Fn! // · · ·

and that the functor F : A→A preserves this ω-colimit.

There is a canonical morphism m : F(µF)→ F such that

(µF ,m)

is an initial F-algebra.

Example
Take A to be the category of bipointed sets, and F as above.

0 is {>,⊥}.
The category has all colimits, and F preserves the colimit of the
chain above.

Indeed, that colimit is D the dyadic rationals in [0,1].

So the initial algebra is FD→D.
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The main existence theorem for initial
algebras/final coalgebras

Barr 1993
Assume that the underlying category A has a final object 1 and
a limit νF of

1 F1!oo F21F!oo F2!oo · · · Fn1Fn−1!oo · · ·
Fn!oo

and that F : A→A preserves this ω-limit.

There is a canonical morphism m : F → F(νF) such that

(νF ,m)

is a final F-coalgebra.

We cannot use this to prove Freyd’s characterization of [0,1].
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Proof of Freyd’s Theorem

Recall
i : [0,1]→ F [0,1].

These sets are complete metric spaces,
i is a bijection and an isometry.

Regard the set X a (discrete) space.

The space
S = homBiP(X , [0,1]).

is a closed subspace of homCMS(X , [0,1]), hence is complete.
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Proof of Freyd’s Theorem

d(Ff ,Fg) ≤
1
2

d(f ,g).

We have a contracting endofunction ψ : S → S:
take f : X → [0,1] to i−1

· Ff · e:

X

f
��

X e //

ψ(f)
��

FX

Ff
��

[0,1] [0,1] F [0,1]
i−1
oo

By the Contraction Mapping Thm., there’s a unique f ∗ = ψ(f ∗).

f ∗ is exactly a coalgebra morphism (X ,e)→ ([0,1], i).

Exercise
I’m cheating. But how?
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Variation of Freyd 1999

Consider F : BiMS→ BiMS given by

(X ,d) (X , 1
2d)(X ,d) (X , 1

2d)7→>⊥ >⊥

identify > of left with ⊥ of right
use the quotient metric

Freyd
The final coalgebra of F : BiP→ BiP is [0,1] as above.

Variation: LM
The final coalgebra of F : BiMS→ BiMS is [0,1] as above.
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Summary concerning F : BiP→ BiP

I On BiP, the initial algebra is the dyadic rationals in [0,1].

I On BiP, the final coalgebra is the unit interval
as a set.

I On BiMS, the final coalgebra is the unit interval
as a metric space.

The final coalgebra turned out to be the Cauchy
completion
of the initial algebra.
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Development: fractals as final coalgebras

To some extent, fractal subsets of Rn are described as final
coalgebras.

In many cases those final coalgebras are completions of the
initial algebras.

This has been worked out in a few concrete settings:

I the Sierpinski triangle and the circle(!)
(with Prasit Bhattacharya, Jayampathy Ratnayake, and
Robert Rose)

I the Sierpinski gasket, including complex gluing.
(with Victoria Noquez)
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The Sierpiński Gasket as a Final Coalgebra
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Tripointed sets

L

>

R

A tripointed set is a set X together with distinguished different
elements >, L , and R.

Morphisms are functions preserving >, L , and R.

The initial object I of Tri is {>,L ,R}.
But Tri has no final object.
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The functor F(X) on Tri

Here is a generic tripointed set:

L

>

R

The functor F takes this to 3 copies with identifications as
shown above. In a tripointed metric space:
I all 3 distinguished points have distance 1
I the functor squashes distances by 1/2
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Results
Work of Bhattachaya, Ratnayake, Rose, Manokaran, Jayewardene, Noquez, LM

category initial algebra final coalgebra
Set3 (G,g) its completion (S , s)
Tripointed sets “finite address space” also (S, σ) = the

of the gasket S Sierpinski Gasket
as a subset of R2

Met3
Sh (G,g) (S , s)

short maps

Met3
L (Gρ,g) none exists

Lipschitz maps G with discrete metric

Met3
C (Gρ,g) (S , s) and (S, σ)

continuous maps they are bilipschitz
isomorphic
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Returning to [0,1] and R

The presentation of [0,1] and R
is “defective” in the sense that it doesn’t relate to
the natural arithmetic operations that we use on those
structures.

To capture these, we need another definition.
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Corecursive algebras

(B , β : FB → B) is a corecursive algebra for F
if for every coalgebra α : A → FA , there is a unique α† : A → B
so that

α† = β · Fα† · α

as shown:

A α //

α†

��

FA

Fα†

��
B FB

β
oo corecursive algebra: (∀α)(∃!α†)
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Some corecursive algebras

For FX = N × X

N × [0,1]
(n,r)7→ n+r

1+n+r // [0,1]

N ×R≥0
(n,r)7→n+ r

1+r // R≥0
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Concerning [0,1]

Given e : X → N × X , we want a unique e†:

X e //

f
��

N × X

N×f
��

[0,1] N × [0,1]
s(n,r)= n+r

1+n+r

oo

We consider ϕ : [0,1]X → [0,1]X given by

ϕ(f) = s · (N × f) · e

The space [0,1]X is compact by Tychonoff’s Theorem.

ϕ is a shrinking map: for f , g, d(ϕf , ϕg) < d(f ,g).

A shrinking map on a non-empty compact space
has a unique fixed point (exercise!)

30/61



Concerning R≥0

Let’s adopt notation for f : X → R≥0
× X :

f(x0) = (a0, x1) f(x1) = (a1, x2) · · · f(xn) = (an, xn+1) · · ·

Then we are asking if we can solve the system

x0 = a0 + 1
1+x1

x1 = a1 + 1
1+x2

...
xn = an + 1

1+xn+1
...

x0 = a0 + 1/(1 + a1 + 1/(1 + a2 + · · ·+ 1/(1 + an + · · · )))

The theory of contined fractions implies that we have a
corecursive algebra.
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Extracting final coalgebras from certain
corecursive algebras

Lemma (Adámek, Miliius, LM)

Let H be any endofunctor, let (A , α) be a corecursive H-algebra.

Let (B , β) be a fixed point of H which is a subalgebra of A.

Assume that for every coalgebra e : X → HX, the
coalgebra-to-algebra map e† factors through the algebra
morphism m : B → A.

X e //

ê
��

e†

&&

HX

Hê
��

He†

yy

B
β−1

//

m
��

HB

Hm
��

A HAα
oo

Then (B , β−1) is the final coalgebra of H.
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Extracting final coalgebras from certain
corecursive algebras

Proof.
Fix a coalgebra e : X → HX . Consider the diagram below:

X e //

ê
��

e†

&&

HX

Hê
��

He†

yy

B��
m
��

β−1
// HB

Hm
��

A HAα
oo

We claim that ê is a coalgebra morphism.
For this, a diagram chase shows that

m · ê = m · β · Hê · e

Then use the fact that m is monic.

Uniqueness is also easy.
�
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Application: the positive irrationals

X e //

e†
��

N × X

N×e†
��

[0,1] N × [0,1]
s(n,r)= n+r

1+n+r

oo

Lemma
For all coalgebras e : X → FX and all x ∈ X,
e†(x) is an irrational number.

Proof.

By contradiction, as in the proof that
√

2 is irrational,
and also using a point in the justification of the Euclidean
algorithm for gcd. �
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Application: the positive irrationals

Thus we have

X e //

ê
��

e†

''

N × X

N×ê
��

N×e†

ww

[0,1] ∩ Irr
β−1

//

m
��

N × ([0,1] ∩ Irr)

N×m
��

[0,1] N × [0,1]
s(n,r)= n+r

1+n+r

oo

Here m is an inclusion,
and the restriction of s to [0,1] ∩ Irr is a bijection.

Thus, this restriction is a final coalgebra.
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Application

Lemma
Let H be any endofunctor, let (A , α) be a corecursive H-algebra.

Let (B , β) be a fixed point of H which is a subalgebra of A.

Assume that for every coalgebra e : X → HX, the
coalgebra-to-algebra map e† factors through the algebra
morphism m : B → A.

Then (B , β−1) is the final coalgebra of H.

Take A to be (R≥0, ρ).

Take B to be the subalgebra of positive irrationals.
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The Baire space as a final coalgebra

Let B be the irrationals in [0,1].

Then
B � B = positive irrationals

via
x 7→

1
x
.

We already know that (B , ρ−1) is a final coalgebra for N × X ,
where ρ is

n, r 7→ n +
1

1 + r

Then ρ−1 transfers along the isomorphism.
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The Baire space as a final coalgebra

Pratt & Pavlovic’s Theorem
The Baire space

B = [0,1] ∩ Irr

is a final coalgebra of N × X .

The structure is
〈β, γ〉 : B → N × B

where

β(x) =

⌊
1
x

⌋
− 1 and γ(x) =

(
1
x

)
mod 1

γ is called the Gauss map.
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All known final coalgebras
whose carriers are subsets of R

and whose structures are “simple” functions

FX = N × X

carrier inverse of structure

R≥0 n + r
1+r

[0,1) n+r
1+n+r

R≥0
∩ Irr n + 1

1+r

[0,1] ∩ Irr 1
1+n+r

GX = N × X + 1

carrier inverse of structure

R≥0 [ρ,0], where ρ(n, r) = n + 1
1+r

[0,1] [σ,1], where σ(n, r) = n+r
1+n+r
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Is this a corecursive algebra?

The functor is
HX = R × X

And the algebra is

R ×R
x+γ·y // R

with a fixed 0 < γ < 1.

So we are asking whether every f has a unique f†:

X f //

f†
��

R × X

R×f†
��

R R ×Rx+γ·y
oo
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Is this a corecursive algebra?

Let’s adopt notation for f : X → R × X like

f(x0) = (a0, x1) f(x1) = (a1, x2) · · · f(xn) = (an, xn+1) · · ·

Then we are asking if we can solve the system

x0 = a0 + γx1
x1 = a1 + γx2

...
xn = an + γxn+1

...

x0 = a0 + γa1 + γ2a2 + · · ·+ γnan + · · ·

41/61



Is this a corecursive algebra?
Almost

The functor is
HX = R × X

And the algebra is

R ×R
x+γ·y // R

with a fixed 0 < γ < 1.

Lemma

For every bounded f there is a unique bounded f†:

X f //

f†
��

R × X

R×f†
��

R R ×Rx+γ·y
oo

Bounded here means that supx∈X π1(f(x)) < ∞.
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OrderedMetric Spaces

Definition
An ordered metric space isM = (M,d) such that
I d is a metric on M
I ≤ is a partial order on the set M,
I for all y ∈ M,

{z : z ≤ y} and {z : z ≥ y}

are closed sets in the metric topology.
The spaceM is complete if it is complete as a metric space.

Example
For all sets X , B(X ,R) is a complete ordered metric space
if we consider it with the pointwise order, i.e.:

f ≤ g iff f(x) ≤ g(x) for all x ∈ X .
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Contraction (Co)induction Principle

Theorem (Feys, Hansen, LM’19)

LetM be a complete ordered metric space.
Let Φ :M→M be both contracting and order preserving.

Then the fixed point Φ∗ of Φ is also
I a least pre-fixed-point (if Φ(x) ≤ x, then Φ∗ ≤ x),
I and a greatest post-fixed-point (if x ≤ Φ(x), then x ≤ Φ∗).

Proof.
Let x be such that Φ(x) ≤ x.
Then by induction on n ≥ 1, Φn(x) ≤ x.

And since Φn(x) ≤ x for all n, and {z : z ≤ x} is closed,
we see that Φ∗ = limn Φn(x) ≤ x also. �
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Two operators

Now suppose that we have two contracting and
order preserving operators, say Φ,Ψ :M→M.

Lemma (Sufficient Condition Lemma)

If Φ(Ψ∗) ≤ Ψ∗, then Φ∗ ≤ Ψ∗.
If Φ∗ ≤ Ψ(Φ∗), then Φ∗ ≤ Ψ∗.
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Recovering a well-known fact

Lemma
If P is a stochastic n × n matrix
(its columns are probability vectors), then

(I − γP)−1

has all non-negative entries.

Using Contraction Coinduction
Let Φ : M → M be

Φ(X) = I + (γP)X .

Easily, Φ is a monotone contraction,
and its fixed point is

Φ∗ = (I − γP)−1.

Let 0 be the zero matrix, and note that Φ(0) ≥ 0.
So 0 is a post-fixed-point.
By Contraction Coinduction, (I − γP)−1 = Φ∗ ≥ 0.
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The Little Prince on a toroidial planet
The Little Prince from
Antoine de Saint-Exupéry’s book
lands on a torus,
a donut shaped planet
divided into nine regions (states).
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The Little Prince

He has a map of his planet.
It shows the immediate reward for each state.

−1 −1 great food 10
a b c

−1 sand −5 monster −4
d e f

avg food 5 −1 −1
g h i

At each step, the Little Prince has a choice to go N, S, E, or W.
He cannot stay stationary.
Since the planet is a torus (donut), going N in state a leads to
g, going W leads to c, etc.
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Effects of actions

His set of possible actions is

Act = {⇑,⇒,⇓,⇐}.

However, these actions are probabilistic.

If he chooses ⇑, then with prob .8 he goes N, with prob .1 he
actually lands E, and with prob .1 he actually lands W .

If he chooses⇒, then with prob .8 he goes E, with prob .1 he
actually lands N, and with prob .1 he actually lands S.

If he chooses ⇓, then with prob .8 he goes S, with prob .1 he
actually lands E, and with prob .1 he actually lands W .

If he chooses⇐, with prob .8 he goes W , with prob .1 he
actually lands N, and with prob .1 he actually lands S.
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Markov Decision Processes:
the formal definition

An MDP is a tuple (S ,Act ,go, reward, γ) such that
x
I S is a state set whose elements are s1 . . . , sn

I Act is a set of actions , whose elements are α, β, . . .
I go(s, α, t), is a probability transition function, and for each

s and α, we require that
∑

t go(s, α, t) = 1.
I reward : S → R is an immediate reward function;
I γ is a number between 0 and 1 called the discount factor.

We have not yet discussed γ.
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Better

The distribution monad is the discrete variant of
the Giry monad.

The functor part ∆: Set→ Set gives the finite probability
measures.

The unit δ : id ⇒ ∆ gives the Dirac distribution,
and the multiplication

µ : ∆∆⇒ ∆

is “mixing”.

Expected value is an Eilnberg-Moore algebra

E : ∆R→ R
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Policies and their long term values

A policy is a function from states to actions:

σ : S → Act

Each policy has a long term value function

LTVσ : S → R

It is the unique bounded function making the following diagram
commute:

S
mσ //

LTVσ

��

R ×∆S

R×∆(LTVσ)
��

R R ×Rx+γ·y
oo R ×∆R

R×E
oo
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The fine print

I continue to omit all machinery handling the boundedness
requirement.

S
mσ //

LTVσ

��

R ×∆S

R×∆(LTVσ)
��

R R ×Rx+γ·y
oo R ×∆R

R×E
oo

The map on the bottom is a corecursive algebra.

In some of this work, we need a metric on ∆R,
and we take the Kantorovich metric:

d∆X (ϕ,ψ) = sup{dR((E◦∆f)(ϕ), (E◦∆f)(ψ)) | f : X → R is non-expansive}.
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More fine print

We got

S
mσ //

LTVσ

��

R ×∆S

R×∆(LTVσ)
��

R R ×Rx+γ·y
oo R ×∆R

R×E
oo

from a determinized version

∆S
det mσ //

`′σ
��

R ×∆S

R×`′σ
��

R R ×Rx+γ·y
oo

that was obtained via a distributive law
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The Bellman Equation

Bellman asks for a map V ∗ : S → R so that

V ∗(s) = u(s) + γ · max
a∈Act

{∑
s′∈S

ta(s)(s′) · V ∗(s′)
}
.

We write this as

S
m=(u,t) //

V ∗

��

R × (∆S)Act

R×(∆V ∗)Act

��
R R × (∆R)Act

x+γ·y ·(R×maxAct ·EAct )

oo

The presence of “max” here makes this difficult to solve

55/61



Policy Improvement

A policy τ is called an improvement of a policy σ if for all s ∈ S it
holds that

τ(s) = argmaxa∈Act {`σ(ta(s))}.

Informally, τ(s) is an action a that maximizes the expected
future rewards obtained by doing a now, and then continuing
with σ.

However, it is not prima facie clear that τ is an improvement,
since following τ means to also “continue with τ” (not with σ).

Proving that σ ≤ τ is the content of the Policy Improvement
Theorem.
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Reproving a known result

Theorem (Bellman)
The Policy Improvement Theorem holds.

Proof.
New proof [FHM] uses Contraction Coinduction. �

The importance of this on an ideological level is that
Policy Improvement feels like coinduction!

57/61



A Surprise: Email from October 7

Hello,

My name is XXXXX and I am a PhD student at YYY.

I was recently on an internship at IBM Research where

I worked on formalizing the foundations of MDPs.

You might be interested in the paper we wrote, where

we directly formalized (in the proof assistant Coq)

Sections 2 and 3 of your paper "Long Term Values of

Markov Decision Processes (Co)algebraically".

https://arxiv.org/abs/2009.11403

I want to thank you for such a well-written paper, it

was a pleasure to read it and formalize proofs using

contraction coinduction!

Thank you,

XXXXX
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Summary

I hope to have shown that there are ways to apply
final coalgebras and corecursive algebras
in settings related to classical continuous mathematics.

Much has yet to be done to get a systematic account.

59/61



The conceptual comparison chart

set with algebraic set with transitions
operations and observations
algebra for a functor coalgebra for a functor
initial algebra final coalgebra
least fixed point greatest fixed point
congruence relation bisimulation equivalence rel’n
equational logic modal logic
recursion: map out of corecursion: map into
an initial algebra a final coalgebra
Foundation Axiom Anti-Foundation Axiom
iterative conception of set coiterative conception of set
useful in syntax useful in semantics
useful in discrete math useful in continuous math
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For more

Main references, from my own work
Jiřı́ Adámek, Stefan Milius, and LM,
Initial Algebras, Terminal Coalgebras, and the
Theory of Fixed Points of Functors
(a draft of this book is on the web)

Prasit Bhattacharya, Jay. Ratnayake, Robert Rose, and LM,
Fractal Sets as Final Coalgebras Obtained by Completing an
Initial Algebra,
in Horizons of the Mind. A Tribute to Prakash Panangaden.

Frank Feys, Helle Hansen, and LM,
Long-term Values in Markov Decision Processes
(Co)Algebraically, CMCS’18.

Victoria Noquez and LM,
The Sierpinski Carpet as a Final Coalgebra, ms. 2021.
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